Section 1: PREAMBLE

This section presents different units used in general and in atomic and nuclear physics and a brief resume of the basic definition of terms describing the structure of matter pertaining to atoms and nuclei

<u>Units</u>

There is an internationally agreed scheme of units: Système Internationale (SI). It comprises:

- SI units (3 types: base, supplementary and derived)
- SI prefixes.

SI base units

There are seven SI base units:

Quantity	Symbol	Unit	Abbreviation
length	l	metre	m
mass	т	kilogram	kg
time	t	second	S
electric current	Ι	ampere	А
temperature	Т	kelvin	K
luminous intensity	I_{v}	candela	cd
amount of substance	n	mole	mol

Supplementary units

Quantity	Unit	Abbreviation
plane angle	radian	rad
solid angle	steradian	sr

Derived units

SI base units are used to derive other units.

Some have special names:

Quantity	Symbol	Unit	Abbreviation
area	A	square metre	m^2
volume	V	cubic metre	m ³
speed, velocity	ν	metre per second	$m s^{-1}$
speed of light	С	metre per second	$m s^{-1}$
angular velocity	ω	radian per second	rad s ⁻¹
acceleration	а	metre per second ²	$m s^{-2}$
density	ρ	kilogram per metre ³	kg m ⁻³
momentum	р	kilogram metre per second	kg m s ⁻¹
angular momentum	I, l	kilogram metre ² per second kg m ² s ⁻¹	

Quantity	Unit symbol	Unit	Expression in base units	Expression in derived units
energy	J	joule	$m^2 kg s^{-2}$	N m
force	Ν	newton	m kg s ⁻²	$J m^{-1}$
pressure	Pa	pascal	$m^{-1} kg s^{-2}$	$N m^{-2}$
power	W	watt	$m^2 kg s^{-3}$	$J s^{-1}$
electric charge	С	coulomb	s A	
electric potential	V	volt	$m^2 kg s^{-3} A^{-1}$	$W A^{-1}$
frequency	Hz	hertz	s^{-1}	

SI Prefixes.

Factor	Prefix	Symbol	Factor	Prefix	Symbol
10 ¹⁸	exa	Е	10-1	deci	d
10^{15}	peta	Р	10 ⁻²	centi	с
10^{12}	tera	Т	10 ⁻³	milli	m
10 ⁹	giga	G	10 ⁻⁶	micro	μ
10^{6}	mega	М	10-9	nano	n
10^{3}	kilo	k	10^{-12}	pico	р
10^{2}	hecto	h	10^{-15}	femto	f
10	deca	da	10 ⁻¹⁸	atto	а

Table 1.6 Prefixes for binary multiples.

Factor	Name	Symbol	Origin	Derivation
2^{10}	kibi	Ki	kilobinary $(2^{10})^1$	kilo $(10^3)^1$
2^{20}	mebi	Mi	megabinary $(2^{10})^2$	mega $(10^3)^1$
2^{30}	gibi	Gi	gigabinary $(2^{10})^3$	giga $(10^3)^1$
2^{40}	tebi	Ti	terabinary $(2^{10})^4$	tera $(10^3)^1$
2^{50}	pebi	Pi	petabinary $(2^{10})^5$	peta $(10^3)^1$
2^{60}	exbi	Ei	exabinary $(2^{10})^6$	$exa (10^3)^1$

Table 1.7 Examples and comparisons of binary prefixes with SI units.

1 kibibit = 1024 bit	1 Kibit = 2^{10} bit	1 kilobit = 1000 bit	1 kbit = 10^3 bit
1 mebibyte = 1048576 B	$1 \text{ MiB} = 2^{20} \text{ B}$	1 megabyte = 1000000 B	$1 \text{ MB} = 10^6 \text{ B}$
1 gibibyte = 1073741824 B	$1 \text{ GiB} = 2^{30} \text{ B}$	1 gigabyte = 100000000 B	$1 \text{ GB} = 10^9 \text{ B}$

Conventions

How units and symbols are expressed in the literature.

- Symbols for physical quantities should be printed in italic (sloping) type: e.g. T for temperature.
- Symbols for units should be in roman (upright) type: e.g. K for kelvin.
- Symbols for vector quantities should be in bold italic type: e.g. *F* for force.
- Names of all units are in lower case: e.g. newton.
- Symbols for units that derive from a proper name should begin with a capital letter:
 e.g. V (for volt), N (for newton) etc.
- The symbol for a unit should not be followed by a full stop except at the end of a sentence and should remain unaltered in the plural. Thus, 6 cm **not** 6 cms.

Structure of Matter

Compounds, Elements, Atoms and Molecules

Matter consists of mixtures of **substances**, e.g. salt in water. Salt and water are examples of **compounds**.

• A <u>compound</u> can be decomposed into simpler substances by ordinary chemical means.

Salt is a compound of sodium and chlorine, which are elements

• An <u>element</u> cannot be further decomposed by ordinary chemical means.

All substances are composed of **atoms**.

• An <u>atom</u> is the smallest quantity of a substance that can exist.

There are 112 different atomic species known today.

These are the **elements**. Single, free atoms are not always stable and combine with other atoms chemically to form **molecules**.

A molecule is the smallest chemical unit of a substance capable of independent existence.

Element	Atomic symbol	Molecular symbol
Hydrogen	Н	H_2
Carbon	С	С
Oxygen	О	O_{2}, O_{3} (ozone)

Nitrogen	Ν	N_2
Iron	Fe	Fe
Copper	Cu	Cu

Molecules of compounds consist of two or more different atomic species

Compound	Molecular symbol
Water	H ₂ O
Carbon dioxide	CO_2
Carbon monoxide	СО
Methane	CH_4

Units used in atomic and nuclear physics

Energy: SI unit: joule J

In atomic and nuclear physics: electron volt (eV)

- energy gained by an electron passing through a potential difference of one volt.

$$1 \text{ eV} = 1.602 \times 10^{-19} \text{ J}$$

Multiples: keV (10^3 eV) MeV (10^6 eV) GeV (10^9 eV)

Size:

Ångstrom (Å):1 Å = 10^{-10} m. Conveniently sized for the atom.Fermi or femtometre (fm):1 fm = 10^{-15} m. Nuclear sizes are commonly quoted in fermis.Micron:1 μ m = 10^{-6} m.Barn (b):A unit of **area**1 b = 10^{-28} m² = 10^{-24} cm² It is a measure of the **probability** that

a nuclear reaction will take place.

One barn \approx cross-sectional area of a nucleus with A = 100

Reaction probabilities (cross sections) very much greater and very much smaller than one barn are common.

Molecular weight and atomic size

Molecular weight M

Mean mass (in u) of 1 molecule of a substance = sum of the atomic weights of the atoms in the molecule.

- For example, the molecular weight of H_2 is 2.0160 (2×1.0080).
- The molecular weight of H_2O is 18.051 ($2 \times 1.008 + 15.999$).

BPA

Definitions:

For a pure substance, consisting of a compound of molecular weight M,

1 mole = M g 1 kg-mole = M kg of that substance.

Avogadro's hypothesis

The number of molecules in 1 mole of any substance is the same. It is referred to as Avogadro's number

 $N_{\rm A} = 6.022 \times 10^{23}$ per mole = 6.022×10^{26} per kg-mole.

Thus, the mass of 1 molecule of molecular weight, *M* is $M/N_A = M/(6.022 \times 10^{26})$ kg.

The mass of 1 **atom** of atomic weight A is A/N_A . Hence, 1 u = $1/N_A$.

Atomic size (estimate)

An element of atomic mass A has N_A/A atoms per kg.

or, $\rho N_A/A$ atoms per unit volume (ρ = density)

e.g. ¹²C contains N_A atoms per mole (12g) or $N_A/0.012$ atoms per kg.

The mean volume occupied by one atom is $V = A/\rho N_A$

Consider a solid, and assume that the atoms are closely packed spheres with no space between them:

The mean volume of one atom

$$V_{\rm A} = \frac{4}{3}\pi r^3 \approx V = \frac{A}{\rho N_{\rm A}}$$

where r = atomic radius. Therefore,

$$r \approx \left(\frac{3A}{4\pi N_{\rm A}\rho}\right)^{1/3}$$

e.g. carbon, $\rho = 2.265 \times 10^3$ kg m⁻³ and A = 12.01, therefore;

$$r \approx \left(\frac{3 \times 12.01}{4\pi \times 6.022 \times 10^{26} \times 2.265 \times 10^3}\right)^{1/3} = 1.28 \times 10^{-10} \,\mathrm{m} = 1.28 \,\mathrm{\AA}.$$

This is typical of the size of an atom, which is a few Å.