Appendix A: Mathematical Formulas

Exponentials and Logarithms

$$
\begin{array}{cl}
e^{\ln x}=x, & \ln (e)=1, \quad \ln \left(e^{a}\right)=a, \quad \ln \left(x^{a}\right)=a \ln x \\
e^{a} e^{b}=e^{a+b}, & \ln (x y)=\ln x+\ln y, \quad \ln (x / y)=\ln x-\ln y
\end{array}
$$

Solid Bodies

Volume of sphere radius R : $\frac{4 \pi R^{3}}{3}$.
Surface area of sphere radius R : $4 \pi R^{2}$.
Volume of cone, base R, height $h: \frac{\pi h R^{2}}{3}$.

Vectors

A vector can be expressed in terms of 3 orthogonal, normalised basis vectors which are commonly denoted \mathbf{i}, \mathbf{j} and \mathbf{k} (or $\hat{\mathbf{x}}, \hat{\mathbf{y}}$ and $\hat{\mathbf{z}}$): $\mathbf{a}=a_{x} \mathbf{i}+a_{y} \mathbf{j}+a_{z} \mathbf{k}$, or represented by the number triplet of its components: $\mathbf{a}=\left(a_{x}, a_{y}, a_{z}\right)$.

The modulus of \mathbf{a} is $|\mathbf{a}|=\sqrt{a_{x}^{2}+a_{y}^{2}+a_{z}^{2}}=\sqrt{\mathbf{a} \cdot \mathbf{a}}$

Scalar product: if θ is the angle between two vectors \mathbf{a} and \mathbf{b}, the scalar product is

$$
\mathbf{a} \cdot \mathbf{b}=a_{x} b_{x}+a_{y} b_{y}+a_{z} b_{z}=|\mathbf{a}||\mathbf{b}| \cos \theta .
$$

Vector product: the direction of the vector product is normal to both \mathbf{a} and \mathbf{b} and has magnitude $|\mathbf{a}||\mathbf{b}| \sin \theta$.

Differentiation and Integration

$$
\begin{aligned}
& \frac{\mathrm{d}}{\mathrm{~d} x}\left(x^{n}\right)=n x^{n-1} \quad \int x^{n} \mathrm{~d} x=\frac{1}{(n+1)} x^{n+1}+c \\
& \frac{\mathrm{~d}}{\mathrm{~d} x}\left(e^{a x}\right)=a e^{a x} \quad \int e^{a x} \mathrm{~d} x=\frac{1}{a} e^{a x} \\
& \frac{\mathrm{~d}}{\mathrm{~d} x}(\ln x)=\frac{1}{x} \quad \int \frac{1}{x} \mathrm{~d} x=\ln |x|+c \\
& \frac{\mathrm{~d}}{\mathrm{~d} x}(1 / x)=-\frac{1}{x^{2}} \quad \int \frac{1}{x^{2}} \mathrm{~d} x=-\frac{1}{x}+c \\
& \frac{\mathrm{~d}}{\mathrm{~d} x} \sin x=\cos x \quad \int \cos x \mathrm{~d} x=\sin x+c \\
& \frac{\mathrm{~d}}{\mathrm{~d} x} \cos x=-\sin x \quad \int \sin x \mathrm{~d} x=-\cos x+c
\end{aligned}
$$

$$
\left.\begin{array}{rl}
\frac{\mathrm{d}}{\mathrm{~d} x} \tan x & =\sec ^{2} x
\end{array} \quad \int \sec ^{2} x \mathrm{~d} x=\tan x+c\right)
$$

In the above a and c are constants with c the constant of integration.

- Product rule for differentiation

$$
\frac{\mathrm{d}}{\mathrm{~d} x}\left(f_{1} f_{2}\right)=f_{1} \frac{\mathrm{~d} f_{2}}{\mathrm{~d} x}+f_{2} \frac{\mathrm{~d} f_{1}}{\mathrm{~d} x}
$$

- Quotient rule for differentiation

$$
\frac{\mathrm{d}}{\mathrm{~d} x}\left(f_{1} / f_{2}\right)=\frac{f_{2}\left(\mathrm{~d} f_{1} / \mathrm{d} x\right)-f_{1}\left(\mathrm{~d} f_{2} / \mathrm{d} x\right)}{f_{2}^{2}}
$$

- Integration by parts

$$
\int f(x)\left(\frac{\mathrm{d} g(x)}{\mathrm{d} x}\right) \mathrm{d} x=f(x) g(x)-\int g(x)\left(\frac{\mathrm{d} f(x)}{\mathrm{d} x}\right) \mathrm{d} x
$$

Complex numbers

In terms of its modulus r and angle θ :

$$
z=x+j y=r e^{+j \theta}=r(\cos \theta+j \sin \theta)
$$

Under complex conjugation $j \rightarrow-j$:

$$
z^{*}=x-j y=r e^{-j \theta}=r(\cos \theta-j \sin \theta)
$$

The modulus squared of z is the real number $|z|^{2}=z^{*} z=x^{2}+y^{2}=r^{2}$.

Trigonometric functions

$$
\begin{gathered}
\sin ^{2} x+\cos ^{2} x=1 \\
\sin (x \pm y)=\sin x \cos y \pm \cos x \sin y \\
\cos (x \pm y)=\cos x \cos y \mp \sin x \sin y
\end{gathered}
$$

The following may be derived easily from the above:

$$
\begin{aligned}
\sin x \cos y & =\frac{1}{2}(\sin (x+y)+\sin (x-y)) \\
\cos x \cos y & =\frac{1}{2}(\cos (x+y)+\cos (x-y)
\end{aligned}
$$

$$
\begin{aligned}
\sin x \sin y & =\frac{1}{2}(\cos (x-y)-\cos (x+y) \\
\sin x \pm \sin y & =2 \sin \frac{1}{2}(x \pm y) \cos \frac{1}{2}(x \mp y) \\
\cos x+\cos y & =2 \cos \frac{1}{2}(x+y) \cos \frac{1}{2}(x-y) \\
\cos x-\cos y & =-2 \sin \frac{1}{2}(x+y) \sin \frac{1}{2}(x-y) \\
\sin 2 x & =2 \sin x \cos x \\
\cos 2 x=\cos ^{2} x-\sin ^{2} x & =2 \cos ^{2} x-1=1-2 \sin ^{2} x \\
\cos \theta & =\frac{1}{2}\left(e^{j \theta}+e^{-j \theta}\right) \\
\sin \theta & =\frac{1}{2 j}\left(e^{j \theta}-e^{-j \theta}\right)
\end{aligned}
$$

Series

- Geometric series:

$$
1+x+x^{2}+\ldots+x^{n-1}=\frac{1-x^{n}}{1-x} \xrightarrow{n \rightarrow \infty}(1-x)^{-1} \quad-1<x<1
$$

- Binomial expansion:

$$
(1+x)^{n}=1+n x+\frac{n(n-1)}{2!} x^{2}+\frac{n(n-1)(n-2)}{3!} x^{3}+\ldots
$$

If n is a positive integer the series terminates after $n+1$ terms, otherwise it is an infinite series.

- Taylor Series about the point $x=x_{0}$:

$$
f(x)=f\left(x_{0}\right)+\left(x-x_{0}\right)\left(\frac{\mathrm{d} f}{\mathrm{~d} x}\right)_{x_{0}}+\frac{1}{2!}\left(x-x_{0}\right)^{2}\left(\frac{\mathrm{~d}^{2} f}{\mathrm{~d} x^{2}}\right)_{x_{0}}+\ldots \ldots
$$

The following series are frequently encountered:

$$
\begin{gathered}
e^{x}=1+x+\frac{x^{2}}{2!}+\frac{x^{3}}{3!}+\ldots \\
\cos x=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}+\ldots \\
\sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\ldots \\
\ln (1 \pm x)= \pm x-\frac{x^{2}}{2} \pm \frac{x^{3}}{3}-\ldots
\end{gathered}
$$

$$
(1 \mp x)^{-1}=1 \pm x+x^{2} \pm x^{3}+\ldots . \text { for }-1<x<1
$$

L'Hospital's rule follows from Taylor's series: if $f(0)=g(0)=0$,

$$
\begin{gathered}
\lim _{x \rightarrow 0} \frac{f(x)}{g(x)}=\lim _{x \rightarrow 0} \frac{\mathrm{~d} f / \mathrm{d} x}{\mathrm{~d} g / \mathrm{d} x} . \\
\lim _{x \rightarrow 0} \frac{\sin x}{x}=1 .
\end{gathered}
$$

Differential Equations

Important differential equations and their solutions:

$$
\begin{gathered}
\frac{\mathrm{d} y}{\mathrm{~d} t}+\lambda y=0 \quad y=A e^{-\lambda t} \\
a \frac{\mathrm{~d}^{2} y}{\mathrm{~d} t^{2}}+c y=0 \quad y=B \cos \omega t+C \sin \omega t=A \cos (\omega t+\phi)
\end{gathered}
$$

with $\omega=\sqrt{c / a}$

$$
a \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}+b \frac{\mathrm{~d} y}{\mathrm{~d} x}+c y=0 \quad y=A e^{-\gamma t} \cos (\omega t+\phi)
$$

where a, b, c, A, B, C and ϕ are constants. In the last equation $\gamma=b / 2 a$ and $\omega=\sqrt{c / a-b^{2} / 4 a^{2}}$ and the solution given is correct for a, b and c all positive.

Partial Differentiation

Given a function f of more than one variable, the infinitesimal change in f when the variables are changed infinitesimally is

$$
\mathrm{d} f(x, y)=\left(\frac{\partial f}{\partial x}\right)_{y} \mathrm{~d} x+\left(\frac{\partial f}{\partial y}\right)_{x} \mathrm{~d} y
$$

Coordinate Systems

- Cartesian coordinates: (x, y, z)

The position vector

$$
\mathbf{r}=x \mathbf{i}+y \mathbf{j}+z \mathbf{k}
$$

where x, y, and z are the cartesian coordinates of the point.
Volume element $\mathrm{d} x \mathrm{~d} y \mathrm{~d} z$

- Spherical polar coordinates: (r, θ, ϕ)
$r=\sqrt{x^{2}+y^{2}+z^{2}} ; \theta=\arctan \left(\sqrt{x^{2}+y^{2}} / z\right) ; \phi=\arctan (y / x) ;$
$x=r \sin \theta \cos \phi ; y=r \sin \theta \sin \phi ; z=r \cos \theta$

Volume element: $d V=r^{2} \sin \theta d r d \theta d \phi$;
Area element on the surface of a sphere: $\mathrm{d} A=r^{2} \sin \theta d \theta d \phi$

- Cylindrical polar coordinates: (r, ϕ, z)

Volume element: $\mathrm{d} V=r \mathrm{~d} r, \mathrm{~d} p h i \mathrm{~d} z$

