
10 Probabilities and Errors

If there are different outcomes to the performance of a procedure, there is a set
of probabilities for the different outcomes. There are six possible results if a die is
thrown. If the die is unbiased, the probability of any integer from one to six being
face-up is the same for any of the six numbers. This is not the usual situation. The
probabilities for different horses winning a race are normally different. Whether the
possibilities of a procedure are finite or to all intents and purposes limitless, such
as when the outcomes form a continuous set, the sum of the probabilities for all
outcomes is unity. There must be a result to the procedure. A working definition of
the probability of a certain result from any experiment or procedure is to imagine
doing the identical experiment many times and noting the fraction of times the
particular result is obtained. This is the probability, P (n), of the occurrence of the
result n.

For many procedures, or many similar types of procedure where the result can be
expressed as a number n, the distribution of probabilities is known from experience,
and can be expressed as a function of n. This function is called the distribution
function. All experimental measurements have random errors which arise from
many causes, such as the random imprecision of the measuring devices and the im-
perfections of the person making the measurements. One measurement of a quantity
which is believed to have a ‘true’, constant value, such as the length of a rod, is dif-
ferent from the previous measurement and the deviation of any measurement from
the ‘true’ value may be on either side of the ‘true’ value independently of the sign
of the previous deviation. The observed lengths of the rod are distributed about
a most probable value and the manner in which they are distributed is described
by the distribution function appropriate to random errors of measurement. If the
errors are small, and many measurements of the length of the rod are made, the
spread of the observations is smaller than if the errors are large.

10.1 Distribution functions

Some quantities relevant to distribution functions are outlined in this sub-section
before discussing two of the most useful distributions used in physics. Let us retain
the example of the length of a rod. If the length is measured several times, and the
number of times, N(L) a length between Land L+∆L is recorded is plotted against
L, the result looks like Figure 10.1. The measurements have been put in bins of
width ∆L to produce a histogram of the data.

For a reasonably large number of measurements, the histogram is roughly sym-
metrical about the bin containing the most probable length measured. If very many
measurements are made, the increased number of data points will allow narrower
bins to be used in the histogram. Eventually the distribution becomes a continu-
ous curve. The function P (L) describing the continuous curve is the distribution
function of the measured lengths and the probability that the length lies between
L and L + dL is P (L)dL. Note that in this example P (L) has the dimensions of a
reciprocal length.
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Figure 10.1

The moments of the distribution are properties of the distribution which have
important uses. The first moment is the mean or the average. If N measurements
of the length are taken and the i’th measurement gives the value Li, the average
< L > is

< L >=

∑
i Li

N
. (10.1)

The variance of the distribution of the lengths is a measure of the spread about
the mean, and is defined as

V =

∑
i(Li− < L >)2

N
. (10.2)

An equivalent formula for the variance is obtained from the above by expanding

V =
1

N

∑
i

L2
i −

1

N

∑
i

2Li < L > +
1

N

∑
i

< L >2

=
1

N

∑
i

L2
i − 2 < L >

1

N

∑
i

Li+ < L >2

=< L2 > −2(< L >)2 + (< L >)2 =< L2 > − < L >2 . (10.3)

The standard deviation is most often used as a measure of the spread of a
distribution. It is simply the square root of the variance and has the symbol σ.

σ =
√
V . (10.4)
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Example 10.1 Fifteen measurements are made of the length of a rod. The values obtained
in cm are 24.1, 24.2, 24.4, 24.3, 24.3, 24.2, 24.5, 24.4, 24.3, 24.2, 24.5, 24.4, 24.3, 24.4, and
24.2. What is the mean, the variance and standard deviation of the set of results?

Solution From equation 10.1, the mean is 364.7/15=24.3133 cm. The average of the
square of the lengths is 8867.27/15=591.151 cm2. From equation 10.3, the variance is then
591.151-591.138=0.013 cm2. The standard deviation is the square root of the variance and
equals 0.114 cm.

Problem 10.1 In the above example, what is the percentage change to the mean and the
standard deviation of the addition of an unlikely measurement of 25.3 cm?

For a continuous distribution P (x) of a quantity x, the mean or average value of
x is

< x >=

∫∞
−∞ xP (x)dx∫∞
−∞ P (x)dx

. (10.5)

In the above formula we have written the lower limit of integration to be −∞ to
cover the general situation in which negative values are possible.

For distributions which are symmetrical about zero, the mean is zero. The first
non-vanishing moment of the distribution is then the mean square value. The
mean square of x is

< x2 >=

∫∞
−∞ x

2P (x)dx∫∞
−∞ P (x)dx

. (10.6)

Higher moments of the distribution may be defined in a similar fashion. For a
continuous distribution function P (x) the variance is

V =

∫∞
−∞(x− < x >)2P (x)dx∫∞

−∞ P (x)dx
. (10.7)

With the total probability normalised to unity the denominators in the above
expressions 10.5 to 10.7 reduce to unity.

10.2 The Gaussian distribution We now consider the distribution function which
random errors of measurements obey. The deviations of measurements of a quantity
from its true value are as likely to be positive as negative, and if many measurements
are taken, the distribution is symmetrical about the most probable measured value.
Their distribution function is a Gaussian curve. A Gaussian curve is shown in
Figure 10.2. The mathematical expression for the curve when it has a maximum at
x0 is

P (x) = P0 exp

(
−(x− x0)

2

2σ2

)
, (10.8)
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Figure 10.2

where P0 is the maximum value of P and the parameter σ is related to the full
width ∆x of the curve at one half its maximum height P0.

The variance of a Gaussian distribution function can be evaluated using the
definition (10.7) and equals the square of the parameter σ.

V = σ2. (10.9)

Hence the standard deviation of a Gaussian distribution is equal to the parameter
σ.

Example 10.2 show that ∆x = 2σ
√

2ln2 = 2.355σ, to four significant figures. Solution
For the Gaussian function, when P (x) = P0/2,

exp

(
+

(x− x0)2

2σ2

)
= 2

and (x− x0)2 = 2σ2ln2. Hence x = x0 ±
√

2σ2ln2 and

∆x = 2σ
√

2ln2 = 2.355σ.

Problem 10.2 Use values of definite integrals given in Appendix A to prove equation
10.9.
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The integral from minus infinity to plus infinity of a Gaussian function with peak
height unity is ∫ ∞

−∞
exp

(
−(x− x0)

2

2σ2

)
dx =

√
2π σ. (10.10)

The total probability is made equal to unity by putting P0 in equation 10.8 equal
to 1/

√
2π σ as dictated by the above equation.

10.3 The Poisson distribution

The Poisson distribution describes the frequency with which random, rare events
occur. The number of decays from a radioactive source follows a Poisson distribution.
If equation 7.2 is used to determine the number of decays in a given time interval
it predicts the average number. The actual number will fluctuate around the mean,
with the percentage spread smaller the larger the mean value. A small amount of
radioactive material of exceedingly long half-life may undergo only a few decays a
month. The decays are rare events and their likelihood follows a Poisson distribution.
If the average number of decays per month over a long period is < n >, what is the
probability of n decays in a particular month’s observation?

This probability P (n) is given by

P (n,< n >) =
e−<n> (< n >)n

n!
. (10.11)

where n! equals n(n− 1)(n− 2)....1 and is factorial n. Note that n is an integer
but < n > will normally be non-integral.

Example 10.3 If the average number of decays of a radioactive source per day is 1.2,
what is the probability of the occurrence of 4 such events in a particular day’s study?
Solution The average < n >= 1.2. The probability P (n,< n >) for n = 4 is

P (4, 1) =
e−1.21.24

4!
= 0.026.

Problem 10.3 Show that the total probability of all possible numbers of events occurring,∑n=∞
n=0 P (n), is unity.

The variance of a Poisson distribution is < n > and the standard deviation of
the mean is

√
< n >. This can be proved by noting that

< n(n− 1) >=
∞∑

n=0

n(n− 1)e−<n>< n >n

n!
,

where we have used the formula for the average of a function f(n) in terms of the
probability distribution, P (n), for n. The first two terms on the right-hand side of
the above equation are zero and the right-hand side becomes
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< n(n− 1) >=< n >2
∞∑

n=2

e−<n>< n >n−2

(n− 2)!

=< n >2
∞∑

m=0

e−<n>< n >m

m!
,

putting (n− 2) = m.

The sum in the last equation is unity, from Example 10.2. Hence

< n(n− 1) >= (< n >)2 =< n2 > − < n >,

and
< n2 >= (< n >)2 + (< n >).

Thus the variance, given by equation 10.2, is

V =< n2 > −(< n >)2

= (< n >)2 + (< n >)− (< n >)2 = (< n >), (10.12)

and the standard deviation is

σ =
√
V =

√
< n >. (10.13)

If the mean number of decays observed over a given time interval, < n >, is large,
as it may be for radioactive decays from sources usually used in the laboratory,
the Poisson distribution becomes closely equal to the Gaussian distribution. If the
number of counts observed in a particular time interval is N , N is close to the mean
of a sample of counts, and the error on N is

√
N and the fractional error on the

count is 1/
√
N .

Problem 10.4 Neutrino bursts from a galaxy contain a mean of 12 neutrinos per burst.
Hypothetical detection equipment first converts neutrinos to electrons with an efficiency
of 0.1% and is then able to record single electrons or more. What is the probability that
the equipment will detect a burst?
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10.4 Errors

All experimental measurements have errors, both random and systematic.

The random errors follow a Gaussian distribution given by equation 10.8. The
measurements of a quantity x are distributed about the most probable value x0

and the probability of the occurrence of a measured value between x and x + dx
is equal to P (x)dx when P is normalised to make the total probability unity. This
is done by putting P0 in equation 10.8 equal to 1/

√
2π σ as dictated by equation

10.10. However, the deviations from the ‘true’ value occur randomly, and for a finite
number of measurements in a set or sample the mean differs from the mean of a
similar set taken before or after.

If a sample contains an infinite number of measurements, their distribution is a
continuous curve and the mean is known accurately. However, an infinite number
of measurements can not be made and the determination of the ‘true’ value from
the mean of a limited set has an uncertainty which depends on the number of data
points taken. The mean of the measurements is usually quoted as the best value
determined, and the error is given as the standard error on the mean which is

standard error on the mean = σ/
√
N, (10.14)

where σ is the standard deviation of the Gaussian distribution function of the set of
points. It is important to recognise the distinction between the standard deviation
of the distribution function which represents the spread of measured values, from
the accuracy with which the mean is known.

• Propagation of errors

A measured quantity z may depend upon two other measured quantities x and
y through a functional relationship

z = f(x, y).

A small change ∆z in z is produced by small changes ∆x and ∆y in x and y, with

∆z =

(
∂f

∂x

)
∆x+

(
∂f

∂y

)
∆y.

Squaring both sides gives

(∆z)2 =

(
∂f

∂x

)2

(∆x)2 +

(
∂f

∂y

)2

(∆y)2 + 2

(
∂f

∂x

)(
∂f

∂y

)
∆x ∆y.

If the small increment ∆z is the small error introduced by errors ∆x and ∆y, and
if the latter errors are uncorrelated and equally likely to be negative as positive, over
many measurements the cross-term involving ∆x∆y in the above equation averages
to zero. Regarding ∆x and ∆y as standard deviations on the measurements of x
and y, and ∆z as the consequent standard deviation in the measured value of z, we
then have

σ2
z =

(
∂f

∂x

)2

σ2
x +

(
∂f

∂y

)2

σ2
y . (10.15)
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Example 10.4 Ohm’s Law states that V = IR. What is the error on the voltage V when
there is a measured current of 0.7± 0.02 A through a resistance of 10± 0.2 Ω?

Solution

σ2
V =

(
∂V

∂I

)2

σ2
I +

(
∂V

∂R

)2

σ2
R

= R2σ2
I + I2σ2

R

= 100.(0.02)2 + 0.72(0.2)2 = 0.0596.

hence σV = 0.244 V.

Problem 10.5 What is the current through the resistor of the above example when the
voltage across it is measured to be 12± 0.2 V?

• Systematic errors

There are often systematic errors present in a measurement. For example, a
ruler used to measure the length of a rod may have a calibration error. It may
consistently read too high or too low by a given amount but we don’t know by how
much and in what direction. In that case, the systematic error has to be combined
with the random error on the mean, obtained from the spread in the length readings
using equations 10.9 and 10.11, to give a total error.

Let the ruler’s calibration be uncertain to ±σS. If the mean length measured is
< L > and the standard error on the mean is σM , the mean value of the length has
the additional systematic error σS. The systematic error is usually combined with
the random error by adding them in quadrature. The total standard deviation σ
is given by

σ2 = σ2
M + σ2

S, (10.16)

and the length is quoted as
L =< L > ±σ.

Sometimes the random and systematic errors are quoted separately and the mea-
surement given as

L =< L > ±σM ± σS. (10.17)

10.5 Least-squares fitting

Many experiments measure the value of one quantity y as a second x is varied.
For example, y may be the length of a metal rod and x may be the temperature
at which the length is measured. If we assume there are only small errors on the
measurements of temperature and that these errors can be neglected compared with
the errors on the measured lengths, the data may be as shown on Figure 10.3.
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Figure 10.3

Over a limited temperature range there is reason to believe that y varies linearly
with x over the temperature range considered. Hence, over that range, y is given by
the formula

y = a+ bx. (10.18)

Because of the errors on the points, a line given by equation (10.18) is unlikely to
pass through all the points on Figure 10.3 whatever line is chosen. The problem is
to determine the best line from the data set. The best values of the parameters a
and b are given by fitting the points to a straight line of the form given by equation
(10.18).

Let a measurement yi of y have an error ∆yi. We define a quantity called the
chi-squared, symbol χ2, given by

χ2(a, b) =
∑

i=1,N

(yi − y(a, b))2

∆y2
i

, (10.19)

where the sum is over the N pairs of (x, y), and y(a, b) is the value predicted by
equation (10.18) using parameter values a and b. The best values of a and b are
then those which correspond to the minimum value of χ2.

This technique of estimating the best parameter values is called least-squares
fitting. The best values when all yi have the same errors may be shown to be given
by

a =
< x2 > < y > − < x > < xy >

< x2 > − < x >2
, (10.20)

and

b =
< xy > − < x > < y >

< x2 > − < x >2
. (10.21)

The standard deviations on these parameters are

σ2
b =

σ2
y

N(< x2 > − < x >2)
, (10.22)
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from equation 10.15, and similarly,

σ2
a =

σ2
y < x2 >

N(< x2 > − < x >2)
. (10.23)

Problem 10.6 Seven values of the resistance R of a wire are made at different temper-
atures T . The errors on the temperature measurements are negligible and the errors on
the resistance measurements are all ±0.1Ω. Corresponding data points (temperature first
in degrees Kelvin and resistance in ohms) are: (280, 6.9), (300, 7.1), (320, 7.0), (340,
7.5), (360, 7.5), (380, 7.9) and (400, 7.9). Show that the slope of the best-fit straight line
through the points is 0.0102 (ΩK−1).

Problem 10.7 Using the above values for a and b show that the best fit straight line
through a set of points (x, y) passes through the point (< x >,< y >).
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