Solutions to Problems

Problem 10.1

Adding 27.1 cm to the data set increases the mean to 24.4875 cm . This is 0.7%. $<L>^{2}$ becomes $599.6377 \mathrm{~cm}^{2} .<L^{2}>$ is 600.105 and thus $V=<L^{2}>-<L>^{2}=$ 0.4673 giving $\sigma=0.684$, an increase of a factor of five.

Problem 10.2

The variance is given by equation 10.7 and with the Gaussian normalised,

$$
V=\frac{1}{\sigma \sqrt{2 \pi}} \int_{-\infty}^{\infty}(x-<x>)^{2} P(x) \mathrm{d} x
$$

with

$$
P(x)=e^{-\left(x-\langle x>)^{2} / 2 \sigma^{2}\right.}
$$

since x_{0} in equation 10.8 equals the mean $\langle x\rangle$. Changing the variable from x to $y=x-\langle x\rangle$

$$
V=\frac{1}{\sigma \sqrt{2 \pi}} \int_{-\infty}^{\infty} y^{2} \exp \left(-y^{2} / 2 \sigma^{2}\right) \mathrm{d} y
$$

and from a similar definite integral in Appendix A the integral in the above expression for V can be deduced to equal $\sigma^{2} \sqrt{\sigma^{2} 2 \pi}$, giving $V=\sigma^{2}$.

Problem 10.3

$$
\sum_{n=0}^{n=\infty} P(n)=e^{-<n>} \sum_{n=0}^{n=\infty} \frac{<n>^{n}}{n!}
$$

From equation 6.4

$$
e^{<n>}=\sum_{n=0}^{n=\infty} \frac{<n>^{n}}{n!}
$$

hence

$$
\sum_{n=0}^{n=\infty} P(n)=1
$$

Problem 10.4

The mean number of electrons produced in the detecting equipment by a burst is $\langle n\rangle=0.012$. The probability of detecting a burst is then the probability that a burst results in at least one electron in the equipment. This is unity less the probability that no electrons are produced, and the probability of detecting a burst is

$$
1-e^{-<n>} \frac{<n>^{0}}{0!}=1-e^{-<n>}=0.012 .
$$

Problem 10.5

The current $I=V / R$ and

$$
\Delta I=\frac{\partial I}{\partial V} \Delta V+\frac{\partial I}{\partial R} \Delta R=\frac{1}{R} \Delta V-\frac{V}{R^{2}} \Delta R .
$$

hence

$$
\sigma_{I}^{2}=\frac{1}{R^{2}} \sigma_{V}^{2}+\frac{V^{2}}{R^{4}} \sigma_{R}^{2}=\frac{1}{100}(0.2)^{2}+\frac{144}{10000}(0.2)^{2}
$$

This gives $\sigma_{I}=0.031 \mathrm{~A}$.

Problem 10.6

The mean value of the measured resistances is $\langle R\rangle=7.3714 \Omega$. The mean value of the temperatures is $\langle T\rangle=340 \mathrm{~K}$. The mean value of the squares of the temperatures, $\left\langle T^{2}\right\rangle$, is $117200 \mathrm{~K}^{2}$ and the mean of the temperatures squared, $<T>^{2}$, is $115600 \mathrm{~K}^{2}$. The mean value of the products of R and $T,<R T>$, is $2522.571 \Omega \mathrm{~K}$ and the product $<R><T>$ is $2506.276 \Omega \mathrm{~K}$. The slope b of the best fit straight line is, from equation 10.21,

$$
b=\frac{<R T>-<R><T>}{<T^{2}>-<T>^{2}}=0.0102 \Omega \mathrm{~K}^{-1}
$$

Problem 10.7

Substituting $x=<x>$ into equation 10.21 for the best fit line,

$$
\begin{aligned}
y & =\frac{\left\langle x^{2}><y>-<x><x y>\right.}{<x^{2}>-<x>^{2}}+\frac{\left\langle x y><x>-<x>^{2}<y>\right.}{<x^{2}>-<x>^{2}} \\
& =\frac{\left\langle x^{2}><y>-<x>^{2}<y>\right.}{<x^{2}>-<x>^{2}}=\frac{\left\langle y>\left(<x^{2}>-<x>^{2}\right)\right.}{<x^{2}>-<x>^{2}}=<y>
\end{aligned}
$$

