
2 Differentiation

The differential calculus, discussed in this section, tells us what happens to a
function as a variable on which the function depends is changed by smaller and
smaller amounts, and finally by an infintesimally small amount.

When a variable x changes from x1 to x2 by (x2− x1) the function f(x) changes
from f(x1) to f(x2). If the change in x is smaller, and it changes by the very small
amount δx a smoothly-varying function will change less. Suppose the interval δx
becomes smaller and smaller. As it approaches zero the change in f(x), which we
will write δf(x), also approaches zero. However, the ratio δf(x)/δx can be non-zero.
The differential of the function f(x) at any point x is the limit of the above ratio
as the interval δx becomes vanishingly small, when it is given the symbol dx, and
the vanishingly small increase in f(x) is given the symbol df(x).

df(x)

dx
= Limit as δx tends to zero of

δf(x)

δx
. (2.1)

The differential of a function at a point is the tangent to the curve at that point
and gives the rate of change of the function with respect to the variable on which it
depends. For example, Figure 2.1 shows a plot of the distance x travelled by a jogger
as a function of time when the jogger accelerates to a constant speed. The plot of
distance against time becomes uneven, although its trend is always increasing unless
the person exercising decides to stop and run back the same way. The average speed
over the time t1 to t2 is the total distance divided by the total time, (x2−x1)/(t2−t1),
but the speed at any instant of time varies. The instantaneous speed at time t1 is
obtained by taking the limit as δt becomes infinitesimally small of the ratio δx/δt,
i.e. the differential of the function giving the dependence of x on time. The limit
of this ratio is the slope or gradient of the curve at the time t1. The differential
calculus thus enables a more detailed description to be given of the jogger’s motion
than would be obtained by simply discussing average speeds over measurable time
intervals.

Figure 2.1 A plot of distance against time for a person running.
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• Maxima and Minima

If the runner starts at time zero as in Figure 2.2, speeds up but then slows down
to a stop at the point A, where the direction is reversed, the curve of distance against
time shows a maximum at a time tA. The rate of change of distance with time at
A is the gradient of the curve at A, and there the gradient is zero. Setting the
differential of a function equal to zero thus gives a method of finding the maxima
of the function (if it has any). However, the gradient is also zero at minima of the
function, at times such as tB where the curve bends upwards after the runner has
stopped at point B on the way back to the starting point and reversed direction
once more. Hence, setting the differential to zero determines maxima and minima
at the same time.

Figure 2.2 A plot of distance against time for a person running who does
not always go the same way.

Problem 2.1 The second differential of a function f(x), is simply the differential of
the first differential, and is written d2f/dx2.

d2f

dx2
=

d
dx

(
df

dx

)
. (2.2)

Sketch the first and second differentials of the function in Figure 2.2 and show that the
sign of the second differential determines whether a point is a maximum or a minimum.
Please note that no solution is provided for this problem.

2.1 Simple functions

We now show how to calculate the differentials of simple functions and give rules
which help to do more complicated examples. The change df(x) in f(x) as x goes
from x to x + dx is

df = f(x + dx)− f(x),

and
df

dx
=

f(x + dx)− f(x)

dx
. (2.3)
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This is a general definition of the differentials of functions and can be used in their
determination. When working out the numerator on the right-hand side of equation
2.3, only terms in dx need be retained; terms involving higher powers of dx can
be neglected because if we kept them division by dx to give df(x)/dx would leave
terms involving dx or higher powers of dx. Since dx is vanishingly small these terms
do not contribute to the differential.

Problem 2.2 The simplest example of differentiation is when the function is linear. (The
differential of a constant function is of course zero). Show that the differential of the
function given by equation (1.2) is df/dx = b.

Problem 2.3 Consider now the quadratic function (1.3). Show that its differential is
df/dx = b + 2cx.

The method employed in the above problems (use of equation 2.3) can be used
to show that

d(axn)

dx
= anx(n−1) (2.4)

where a is a constant and n is any integer or number which can be expressed as the
quotient of integers.

2.2 The exponential function

It can be shown that there is a number, e, which when raised to the power x
produces a function, called the exponential function, ex, whose differential is the
same exponential function. This number is called the base of natural logarithms.
Hence

d

dx
(ex) = ex. (2.5)

The numerical, value of e is 2.71828 to the nearest 5 decimal places. The exponential
function may be written as a series in ascending powers of x.

ex = 1 + x +
x2

2!
+

x3

3!
+

x4

4!
+ ....., (2.6)

with the series extending to infinity. The symbol N ! is shorthand for

N(N − 1)(N − 2)(N − 3)....1. (2.7)

and is called factorial N . (Note: The factorial of 0 is always equal to 1 ie 0! = 1).
Using equation 2.4 it may easily be seen that equation 2.6 satisfies equation 2.5.
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• The Differential of lnx

The function ln x is the logarithm to the base e, or the natural logarithm, of
x. If lnx = y, then x = ey.

The special property of the exponential function leads to the result that

d

dx
(ln x) =

1

x
. (2.8)

2.3 Complicated functions

The technique illustrated above of using equation 2.3 can in principle be used
to determine the differential of any function. Here we quote rules, obtained us-
ing equation 2.3, about finding the differentials of different kinds of complicated
functions.

• Powers of functions

d(f(x))n

dx
= n(f(x))n−1 × df(x)

dx
. (2.9)

Example 2.1. Determine the first differential of the function (3x2 + 2x + 4)5/4.

Solution. In the notation used in equation 2.9, f(x) = (3x2 + 2x + 4) and df(x)/dx =
6x + 2. Hence

df(x)
dx

=
5
4
(3x2 + 2x + 4)

1
4 × (6x + 2).

• Products of functions

If f1 and f2 are both functions of x,

d(f1.f2)

dx
= f1

df2

dx
+ f2

df1

dx
, (2.10)

This category formally shows how to deal with constants which multiply a func-
tion. The constant can be ignored and reinstated to multiply the differential when
this has been evaluated.
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Example 2.2. Determine the first derivative of the function f = x1/2 (1− x)−1/2.

Solution. In the notation used in equation 2.10, f1 = x1/2, f2 = (1− x)−1/2.

df1

dx
=

1
2
x−1/2,

df2

dx
=

1
2
(1− x)−3/2.

Equation 2.10 now gives

df

dx
=

1
2
x−1/2(1− x)−1/2 +

1
2
x1/2(1− x)−3/2.

Multiplying top and bottom by (1− x)3/2x1/2 this reduces to

1
2(1− x)

√
x(1− x)

.

Problem 2.4. Determine the first differential of the function (x2 + lnx)2.

• Quotients of functions

d(f1/f2)

dx
=

f2(df1/dx)− f1(df2/dx)

f 2
2

. (2.11)

Example 2.3. Determine the first derivative of the function

f = x1/2 (1− x)−1/2 =
√(

x
(1−x)

)
.

Solution. In the notation used in equation 2.11, f1 = x1/2 and f2 = (1 − x)1/2.
Equation 2.11 now gives

df

dx
=

(1− x)1/2 1
2x−1/2 + x1/2 1

2(1− x)−1/2

(1− x)
.

Multiplying top and bottom by x1/2(1− x)1/2 this reduces to

1
2

1
(1− x)

√
x(1− x)

,

as in Example 2.2.

Problem 2.5. Determine the second differential of the function (x2 + lnx)2.

Problem 2.6 Find the maximum and the minimum values of the function 2x/(3 + x2).
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