Solutions to Problems

Problem 2.2

For $f=a+b x$

$$
\begin{gathered}
\frac{\mathrm{d} f}{\mathrm{~d} x}=\frac{f(x+\mathrm{d} x)-f(x)}{\mathrm{d} x} \\
=\frac{a+b(x+\mathrm{d} x)-a-b x)}{\mathrm{d} x}=b \frac{\mathrm{~d} x}{\mathrm{~d} x}=b .
\end{gathered}
$$

Problem 2.3

For $f=a+b x+c x^{2}$

$$
\begin{gathered}
\frac{f(x+\mathrm{d} x)-f(x)}{\mathrm{d} x}=\frac{a+b(x+\mathrm{d} x)+c(x+\mathrm{d} x)^{2}-a-b x-c x^{2}}{\mathrm{~d} x} \\
=\frac{b \mathrm{~d} x+2 c x \mathrm{~d} x+c \mathrm{~d} x^{2}}{\mathrm{~d} x}=b+2 c x .
\end{gathered}
$$

Problem 2.4

For $f=\left(x^{2}+\ln x\right)^{2}$

$$
\begin{aligned}
\frac{\mathrm{d} f}{\mathrm{~d} x} & =2\left(x^{2}+\ln x\right) \times \frac{\mathrm{d}}{\mathrm{~d} x}\left(x^{2}+\ln x\right) \\
& =2\left(x^{2}+\ln x\right) \times\left(2 x+\frac{1}{x}\right) \\
& =4 x^{3}+2 x+4 x \ln x+\frac{2 \ln x}{x} .
\end{aligned}
$$

Problem 2.5

For $f=\left(x^{2}+\ln x\right)^{2}$

$$
\begin{gathered}
\frac{\mathrm{d} f}{\mathrm{~d} x}=4 x^{3}+2 x+4 x \ln x+\frac{2 \ln x}{x} . \\
\frac{\mathrm{d}^{2} f}{\mathrm{~d} x^{2}}= \\
=12 x^{2}+2+4 \ln x+4+2\left(\frac{x / x-\ln x}{x^{2}}\right) \\
=12 x^{2}+6+4 \ln x+\frac{2}{x^{2}}-\frac{2 \ln x}{x^{2}} .
\end{gathered}
$$

Problem 2.6

The values of x where $f=2 x /\left(3+x^{2}\right)$ has maxima or minima are values where the first differential of f is zero.

$$
\frac{\mathrm{d} f}{\mathrm{~d} x}=\frac{2\left(3+x^{2}\right)-4 x^{2}}{\left(3+x^{2}\right)^{2}}=0 .
$$

Hence the numerator $6-2 x^{2}=0$ and $x= \pm \sqrt{3}$. There is no need in this case to examine the sign of the second differential at $x= \pm \sqrt{3}$ to see which corresponds to the maximum and which the minimum. The maximum value of the function is $\sqrt{3} / 2$ and the minimum $-\sqrt{3} / 2$.

