
3 Integration

An integral of a function gives another function. An integral of a function of a single
variable x is defined as the sum of products of the values of the function at x and
very small increments δx in x, in the limit as δx tends to the infinitesimal dx.

Let the function f(x) be the curve shown in Figure 3.1. The value of the area
under the curve from x = 0 to x = x1 is the sum of the areas of consecutive narrow
strips of width δx and heights equal to the values of f at the ends of the strips. The
x-coordinate xn of the end of the n th strip is nδx, and the value of the function at
this point is f(nδx). The area under the curve between x = 0 and x = x1 is given
to a good approximation, if δx is small, by

Area =
n=(x1/δx)∑

n=0

f(nδx)δx. (3.1)

Figure 3.1

As the strip width δx tends to dx, the sum of the areas of the strips becomes
equal to the area under the curve and is the integral of f from x = 0 to x = x1.
The integral is then written as ∫ x1

0
f(x)dx.

It is equal to the limit, as δx tends to dx, of the right-hand side of equation 3.1 and
may be written ∫ x1

0
f(x)dx =

x=x1∑
x=0

f(x)dx. (3.2)

Equation 3.2 defines a definite integral. The lower and upper limits on integral
sign are the values of the variable x over which the integral is to be performed and
the result depends on the function f and these limits. If the upper limit is regarded
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as a variable, the integral becomes a function of x, and we obtain an indefinite
integral, ∫ x

f(x)dx.

When indefinite integrals are written down the limits are usually omitted.

• Integration is the opposite of differentiation.

Given a function f(x) its integral is that function which, when differentiated,
gives back f(x).

Example 3.1 Show that
d
dx

(∫ x

f(x)dx

)
= f(x).

Solution Let J(x) denote the integral of f(x).

J(x) =
∫ x

f(x)dx = [Limit as δx → dx]
x∑

f(x)δx.

From equation 2.3

dJ(x)
dx

= [Limit as δx → dx]
J(x + δx)− J(x)

δx
,

= [Limit as δx → dx]
∑x+δx f(x)δx−

∑x f(x)δx
δx

,

= [Limit as δx → dx]
f(x + δx)δx

δx
,

=
f(x)δx + (df/dx)δx2

δx
= f(x).

3.1 Simple integrals

The simplest function whose integral can be determined is f(x) = x. From
the formula giving the area of a triangle as half base times height, the integral of
f(x) = x over the range zero to x1 is simply∫ x1

0
xdx = x2

1/2. (3.3)

Since integration is the reverse of differentiation, one way to find the indefinite
integral of f is to find a function which when differentiated gives back f . It can
easily be verified, for example, that∫

xndx =
1

(n + 1)
xn+1. (3.4)
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It also follows from equation 2.8 that∫ 1

x
dx = ln(x), (3.5)

where ln(x) is the natural logarithm of x. Any constant may be added to an indefi-
nite integral because it vanishes on differentiation. Definite integrals do not involve
arbitrary constants. If the value of the integral is known at a particular value of x,
this determines the constant.

• Some properties of integrals

Since the area under the curve representing a function is the integral of the
function, it is seen that ∫ x2

x1

af(x)dx = a
∫ x2

x1

f(x)dx, (3.6)

where a is a constant,∫ x2

x1

(f(x) + g(x))dx =
∫ x2

x1

f(x)dx +
∫ x2

x1

g(x)dx, (3.7)

and ∫ x2

x1

f(x)dx =
∫ x′

x1

f(x)dx +
∫ x2

x′
f(x)dx, (3.8)

with x′ between x1 and x2. It should also be noted that∫ x2

x1

f(x)dx = −
∫ x1

x2

f(x)dx. (3.9)

Example 3.2 Show that the integral of the function (4x3 + 7x2) is (x4 + 7x3/3). The
arbitrary constant has been put equal to zero.

Solution ∫
(4x3 + 3x2)dx = 4

∫
x4dx + 7

∫
x2dx,

from equations 3.6 and 3.7. Hence, from equation 3.4,∫
(4x3 + 7x2) = (x4 + 7x3/3).

Problem 3.1 Integrate 3x2 − 3x + 8− 1/x. Show that adding the definite integral from
1 to 4 to the definite integral from 4 to 8 gives the same answer as the definite integral
from 1 to 8. Show that the definite integral from 1 to 8 equals the definite integral from
1 to 10 less the definite integral from 8 to 10.
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• Integration by substitution

The integral of a function f(x) over a variable x can be changed into an integral
over a new variable y by making x a convenient function of y : x = g(y). Now∫ x2

x1

f(x)dx =
∫ y(x2)

y(x1)
f(x)

(
dx

dy

)
dy. (3.10)

This topic is revisited with examples in the next section after differentiation and
integration of trigonometric functions have been discussed. It is placed here for
completeness.

• Integration by parts

If an integrand is the product of two functions, one of which is f(x) and the
other is the differential of a function g(x)∫

f(x)

(
dg(x)

dx

)
dx = f(x)g(x)−

∫
g(x)

(
df(x)

dx

)
dx. (3.11)

Example 3.3 Show that ∫
xe2xdx =

1
2
xe2x − 1

4
e2x

and verify the answer by differentiation.
Solution
In the notation of equation 3.11 put f(x) = x and dg(x)/dx = e2x, when g(x) = 1

2e2x

and df(x)/dx = 1. Equation 3.11 now gives∫
xe2xdx =

1
2
xe2x − 1

2

∫
e2xdx

=
1
2
xe2x − 1

4
e2x.

The arbitrary constant in the above has been ignored.
The differential of the first term in the answer is given by equation 2.10 as 1

2e2x +xe2x.

The differential of the second term is −1
2e2x and adding recovers xe2x, the expression

which was integrated.

Problem 3.2 Show that∫
x2e2xdx =

1
2
x2e2x − 1

2
xe2x +

1
4
e2x + constant.

• Integrals occur throughout physics. Many physical problems involve eval-
uating the sum of an infinite number of vanishingly small contributions, i.e. they
involve an integral. Lists of useful definite and indefinite integrals are given in the
formulae section.
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3.2 Double and triple integrals

The discussion above was limited to the integration of functions of a single vari-
able. The integral of a function of two variables is a double integral, and a triple
integral corresponds to the integration of a function of three variables. The double
integral of a function f(x, y) is ∫ x2

x1

∫ y2

y1

f(x, y)dydx.

The integral is evaluated by performing one of the integrations first, keeping the
other constant and then performing the second integration. This is in principle
straightforward if the limits on one of the variables do not involve the other. If
however that is not the case the integration is more difficult.

Example 3.4 Show that ∫ x2=a

x1=0

∫ y2=a

y1=0

(x2 + y2)dydx =
2
3
a4.

Solution Performing the x-integration first gives∫ a

0

∫ a

0
(x2 + y2)dxdy =

∫ a

0

(
1
3
x3 + xy2

)a

0
dy

=
∫ a

0

(
1
3
a3 + ay2

)
dy

=
(

1
3
a3y +

1
3
ay3

)a

0

which is 2
3a4.

Example 3.5 Integrate the function (16 − x2 − y2) for values of x between 0 and 2 and
values of y between 0 and x.

Solution Since the upper limit on y depends on x the y integral must be done first
keeping x constant.∫ 2

0

∫ y=x

y=0
(16− x2 − y2)dydx =

∫ 2

0

(
16y − x2y − 1

3
y3
)x

0
drx

=
∫ 2

0

(
(16x− x3 − 1

3
x3
)

dx

=
∫ 2

0

(
16x− 4

3
x3
)

dx

=
(

8x2 − 1
3
x4
)2

0
,

giving the value 80/3.
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Problem 3.3 Show that∫ x

x=0

∫ y=x+1

y=0
(4xy + 3y2)dydx =

3
4
x4 +

7
3
x3 +

5
2
x2 + x.

Triple integrals are dealt with in a similar way to the treatment of double integrals
discussed above. Examples of double and triple integrals when the variables are
coordinates of a point in different coordinate systems are given in Section 9.
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