
5 Trigonometric functions

Trigonometry is the mathematics of triangles. A right-angled triangle is one in
which one angle is 90◦, as shown in Figure 5.1. The third angle in the triangle is
φ = (90◦ − θ).

Figure 5.1

Six ratios can be constructed involving the three sides of a right-angled triangle
and these depend only on the angle θ. The ratios are functions of the variable θ and
are called trigonometric functions. We have already assumed familiarity with
the basic trigonometric functions, sine, cosine and tangent but we list below all six
for completeness.

sin θ =
AB

OA
, (5.1)

cos θ =
OB

OA
, (5.2)

tan θ =
AB

OB
=

sin θ

cos θ
, (5.3)

cosec θ =
1

sinθ
, (5.4)

sec θ =
1

cosθ
, (5.5)

cotan θ =
1

tanθ
. (5.6)

The length of the hypotenuse is always positive and the signs of the lengths of
the sides encompassing the right angle depend in the normal way on which side
of the point O the points A and B lie. With this convention the sines of angles
between 90◦ and 180◦ are positive. For an angle π − θ greater than 90◦, Figure
5.2, in which the length AB equals the length A′B′ and the length OB equals the
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length OB′, shows that sin(π− θ) =A′B′/OA′=AB/OA = sin θ. The sines of angles
between 180◦ and 360◦ are negative, and the signs of cosines are negative between
90◦ and 270◦, becoming positive between 270◦ and 360◦. As the angle θ is increased
to 90◦, sin θ approaches unity.

Figure 5.2

Example 5.1 Determine sin 210◦, cos 120◦ and tan 330◦.

Solution Using figures similar to 5.1 with sides 2,1 and
√

3, sin 210◦ = − sin 30◦ =
−1/2, cos 120◦ = −1/2 and tan 330◦ = −1/

√
3.

5.1 Trigonometric relationships

Many relationships can be derived between the trigonometric functions using
Euclidian geometry. For example, Pythagoras’ theorem tells us that the square of
the hypotenuse in a right-angled triangle equals the sum of the squares of the other
two sides, and this immediately leads to the relation

sin2 θ + cos2 θ = 1, (5.7)

for any angle θ.

The following equations relating the angles θ and φ may also be proved.

sin(θ ± φ) = sin θ cosφ± cos θ sinφ, (5.8)

cos(θ ± φ) = cos θ cosφ∓ sin θ sinφ, (5.9)

where θ and φ are any two angles, and ∓ means for cos(θ + φ) use the minus
sign on the right-hand side, and for cos(θ − φ) use the plus sign.
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Many useful relations between trigonometric functions can be obtained using
equations 5.8 and 5.9 and simple algebraic manipulation.

Problem 5.1 Use equations 5.8 and 5.9 to determine sin 210◦, cos 120◦ and tan 330◦.

Example 5.2 Show that

sin θ =
2 tan(θ/2)

1 + tan2(θ/2)
.

Solution

sin θ = sin(θ/2 + θ/2) = 2 sin(θ/2) cos(θ/2) =
2 sin(θ/2) cos(θ/2)

sin2(θ/2) + cos2(θ/2)
,

from equations 5.8 and 5.7. Dividing top and bottom by cos2(θ/2) gives the answer.

Problem 5.2 Show that
tan θ =

2 tan(θ/2)
1− tan2(θ/2)

.

Problem 5.3 Using suitable constructions it is straightforward to show that if a triangle
has sides a, b and c and the angles opposite the sides are α, β and γ,

a

sinα
=

b

sinβ
=

c

sin γ
.

Use this as the starting point and derive equation 5.8.

5.2 Differentials and Integrals

Use can be made of the above equations (5.8) and (5.9) to determine the differ-
entials and hence the integrals of the trigonometric functions.

d

dθ
(sin θ) =

1

δθ
(sin(θ + δθ)− sin θ) ,

in the limit as δθ tends to the vanishingly small dθ. Hence, from equation (5.8),

d

dθ
(sin θ) =

1

dθ
(sin θ cos dθ + cos θ sin dθ − sin θ),

and

d

dθ
(sin θ) = cos θ. (5.10)

To obtain the last equation we have used the fact that as δθ becomes the in-
finitesimally small dθ, sin dθ becomes dθ and cos dθ becomes unity, the cosine of a
vanishingly small number.
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In a similar way, using equation (5.8), it can be shown that

d

dθ
(cos θ) = − sin θ, (5.11)

and
d

dθ
(tanθ) = sec2θ, (5.12)

where the last relation can be derived using equation (5.3).

Example 5.3 Show that

d
dθ

(sin3 θ cos θ) = sin2 θ(4 cos2 θ − 1).

Solution

d
dθ

(sin3 θ cos θ) = 3 sin2 θ cos2 θ − sin4 θ = sin2 θ(3 cos2 θ − sin2 θ)

= sin2 θ(4 cos2 θ − 1).

The solution used equations 2.10, 5.10 and 5.11.

Problem 5.4 Show that

d
dθ

(
sin θ cos θ
1 + sin θ

)
=

cos2 θ − sin2 θ − sin3 θ

(1 + sin θ)2
.

The integrals of the trigonometric functions can be obtained as the reverse of
the differentials, giving ∫

sin θ dθ = − cos θ, (5.13)∫
cos θ dθ = sin θ, (5.14)

and ∫
tan θ dθ = −ln(|cosθ|) = ln(|secθ|). (5.15)

The last relation is not so obvious as the first two but can readily be verified by
differentiation.

Several differentials and integrals of trigonometric expressions are given in the
formulae section. One technique for performing integrals is the method of substitu-
tion of variables first mentioned in Section 3.1.
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Example 5.4 Integrate
∫

sin2 θ cos θdθ.
Solution

d
dθ

sin θ = cos θ,

and
d(sin θ) = cos θdθ.

Hence ∫
sin2 θ cos θdθ =

∫
sin2 θ d(sin θ) =

1
3

sin3 θ,

ignoring the arbitrary constant.

Problem 5.5 Show that∫
sin2 θ cos3 θdθ =

sin3 θ cos2 θ

5
+

2
15

sin3 θ.

• Trigonometric functions as exponentials

The exponential function ejθ where θ is a real number is complex. The square
of its modulus, and thus its modulus, is unity.

ejθ × e−jθ = 1.

The complex number
z = cos θ + j sin θ,

also has unit modulus, and it can be shown that

ejθ = cos θ + j sin θ. (5.16)

This connection between the exponential function with imaginary argument and
sines and cosines is extremely useful. Since sin(−θ) = sin(0 − θ) = − sin θ, from
equation (5.8), and cos(−θ) = cos(0− θ) = cos θ from equation 5.9,

e−jθ = cos θ − j sin θ. (5.17)

Using the last two equations gives

sin θ =
1

2j
(ejθ − e−jθ), (5.18)

and

cos θ =
1

2
(ejθ + e−jθ) (5.19)
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Example 5.5 Show that equations 5.16 and 5.17 satisfy equation 5.8, thus establishing
the validity of that equation.

Solution

sin(θ + φ) =
1
2j

(ej(θ+φ) − e−j(θ+φ)).

sin θ cosφ =
1
4j

(ejθ − e−jθ)(ejφ + e−jφ)

=
1
4j

(ej(θ+φ) + ej(θ−φ) − e−j(θ−φ) − e−j(θ+φ)).

cos θ sinφ =
1
4j

(ejθ + e−jθ)(ejφ − e−jφ)

=
1
4j

(ej(θ+φ) − ej(θ−φ) + e−j(θ−φ) − e−j(θ+φ)).

Hence
sin θ cosφ+ cos θ sinφ =

1
2j

(ej(θ+φ) − e−j(θ+φ))

= sin(θ + φ).

Problem 5.6 Show that equations 5.16 and 5.17 satisfy equation 5.9.

Problem 5.7 Show that

sin θ + sinφ = 2 sin
(
θ + φ

2

)
cos

(
θ − φ

2

)
,

and that
cos θ + cosφ = 2 cos

(
θ + φ

2

)
cos

(
θ − φ

2

)
.

• Polar form of complex numbers

Using equation (5.16) we may now write the complex number z = a + jb in its
polar form. If a complex number z = a+ jb has a modulus r,

z = (a+ jb) = rejθ (5.20),

where r is given by equation 4.3 and the argument θ is given by equation 4.4. It is
often useful to express complex numbers in polar form, when multiplication becomes
addition of the arguments of exponentials.

Problem 5.8 Express z = (2− 3j)(1 + 2j)/(4 + 3j) in polar form.
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