
6 Series

Series were first introduced in Section 1 and defined in equation 1.4. They are
summations of successive terms, each of which has a structure which depends on
the particular series. The series can have an infinite or a finite number of terms. A
simple example of a finite series is the arithmetic series,

n=n2∑
n=n1

n =
1

2
(n2(n2 + 1)− n1(n1 + 1)) . (6.1)

Each term increases by one and the series begins at n = n1 and ends at n = n2. If
a is a constant

n=n2∑
n=n1

an =
a

2
(n2(n2 + 1)− n1(n1 + 1)) . (6.2)

Another example of a finite series is the geometric series, in which successive
terms equal the previous term multiplied by a constant.

n=N−1∑
n=0

abn = a
(bN − 1)

(b− 1)
, (6.3)

where a and b are constants.

Problem 6.1 Show that
n=5∑
n=2

3xn =
3x2

(x− 1)
(x4 − 1)

6.1 Exponential series

The exponential function given by equation (2.6) can be expressed as a series.
We need a series which when differentiated returns the original series, in agreement
with to the definition of the exponential function given in equation 2.5. Accordingly,
the function ex can be written

ex = 1 + x +
x2

2!
+

x3

3!
+

x4

4!
.., (6.4)

=
n=∞∑
n=0

xn

n!
, (6.5)

where n is an integer, and n! is factorial n given by equation 2.7.

e−x = 1− x +
x2

2!
− x3

3!
+

x4

4!
.., (6.6)
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Section 5 gives relationships between sines, cosines and exponential functions
with imaginary arguments. These equations can be used to express sin x and cos x
in terms of exponentials and then rewrite them as series using the above expansions
of exponential functions. From equations 5.16 and 5.17,

sin x =
1

2j
(ejx − e−jx), (6.7)

and

cos x =
1

2
(ejx + e−jx). (6.8)

Using equations 6.4 and 6.6 these become

sin x = x− x3

3!
+

x5

5!
.... (6.9)

and

cos x = 1− x2

2!
+

x4

4!
... (6.10)

It may not be necessary, but a reminder that in formulae such as 6.9 and 6.10
the angles x are in the natural units of radians may be timely.

Problem 6.2 Derive equation 6.9.

6.2 Binomial theorem

The binomial expansion is a series representation of the function (1 + x) raised
to the power n, where n is any real number. The theorem is that

(1 + x)n = 1 + nx +
n(n− 1)

2!
x2 +

n(n− 1)(n− 2)

3!
x3... (6.11)

The expansion stops at the n’th term after the first (the term whose numerator
becomes zero) when n is a positive integer, otherwise the series is infinite.

The proof of the binomial theorem is established by assuming it to be true and
differentiating both sides.

d

dx
(1 + x)n = n(1 + x)n−1

= n

(
1 + (n− 1)x +

(n− 1)(n− 2)

2!
x2 + ...

)

= n + n(n− 1)x +
n(n− 1)(n− 2)

2!
x2 + ...

This is equal to the expression obtained by differentiating the right-hand side of
equation 6.11, and constitutes a proof of the validity of that equation.
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Equation 6.11 is an important equality and especially useful when x is small
compared with unity, when the ratio of successive terms decreases rapidly. In that
case, the series need only be taken as far as justified by the problem being considered.

Example 6.1 The mass m of an object moving at speed v is multiplied by the factor
(1− v2/c2)−1/2 when special relativity is taken into account. The constant c is the speed
of light in free space and can be taken equal to 3× 108 m s−1. By what percentage is the
mass of a rocket travelling at v = 106 km per hour increased?

Solution The ratio v/c = 9.26×10−4 to two places of decimals, and (v/c)2 = 8.57×10−7.
The binomial expansion of (1− v2/c2)−1/2 is

(1− v2/c2)−1/2 = 1− 1
2
x + (−1

2
)(−3

2
)
1
2!

x2 + ....

with x = (−v/c)2. The second term in the above equation has magnitude 4.29×10−7. The
third term is smaller than the second by the same amount and can be neglected, giving
(1− v2/c2)−1/2 = 1 + 4.29× 10−7 and the percentage increase in mass close to 4.3× 10−5.

Problem 6.3 Show that
1

(1− x)
=

n=∞∑
n=0

xn,

for values of |x| less than unity.

Series expansions of other functions may be determined in a manner similar
to that in which the series expansions of the exponential functions were obtained,
namely by finding a series which when differentiated gives the same differential as
that of the function.

Example 6.2 Show that

ln(1 + x) = x− x2

2
+

x3

3
− x4

4
....

Solution
d
dx

ln(1 + x) =
1

(1 + x)

from equation 2.8. The binomial theorem may now be used to expand this, giving

d
dx

ln(1 + x) = 1− x + x2 − x3 + x4 ...

But
d
dx

(
x− x2

2
+

x3

3
− x4

4
+

x5

5
..

)
= 1− x + x2 − x3 + x4 ...
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Hence

ln(1 + x) = x− x2

2
+

x3

3
− x4

4
....

Problem 6.4 Show that for values of x less than unity

ln
(

1 + x

1− x

)
= 2

(
x +

x3

3
+

x5

5
+

x7

7
+ ....

)
.

6.3 Taylor expansion

The Taylor expansion is a series expansion of any well-behaved function such as
usually encountered in physics. Taylor’s series gives the value of a smooth function
f(x) in terms of the value of the function at x = a and the values of the first and
higher differentials of the function evaluated at x = a.

f(x) = f(a) + (x− a)

(
df

dx

)
a

+
(x− a)2

2!

(
d2f

dx2

)
a

+ ... (6.12)

In this formula the subscript a on the differentials indicates that after their deter-
mination as a function of x they are evaluated at x = a. The closer a is to x the
more rapidly, in general, does the series converge, and as (x − a) tends to the in-
finitesimally small interval dx we recover the definition of the differential given in
equation 2.3.

The proof of Taylor’s expansion is reasonably straightforward but lengthy and
will not be pursued here. It can be found in standard mathematics texts.

Example 6.3 The potential energy between two atoms separated by a distance r in a
solid is often taken to be of the form

U(r) = ε

(
(
a

r
)12 − (

a

r
)6
)

,

with a ≈ 3 × 10−10m and ε ≈ 3 × 10−20J. Find the mean distance apart, a0, of the
atoms. This is the distance which makes the potential energy a minimum. Show that for
separations close to a0 the potential energy may be closely approximated by

U(r) = U(a0) +
(r − a0)2

2!

(
d2U

dr2

)
a0

.

Solution the potential energy curve has a minimum given by dU/dr = 0.

dU

dr
= ε

(
−12a12

r13
+

6a6

r7

)
.

Putting this derivative equal to zero gives the minimum at r equal to a times the sixth
root of 2, or a0 = 1.13a = 3.4× 10−10m.
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Using equation 6.12 to expand the potential energy around a0

U(r) = U(a0) + (r − a0)
(

dU

dr

)
a0

+
(r − a)2

2!

(
d2U

dr2

)
a0

+ ...

But dU/dr = 0 at r = a0 hence

U(r) = U(a0) +
(r − a)2

2!

(
d2U

dr2

)
a0

+ ...

with higher terms negligible if r is close to a0.

Problem 6.5 Two functions f(x) and g(x) are both zero at x = 0, hence the ratio f/g
as x tends to zero can not be determined directly. L’Hospital’s rule says that

Limit as x → 0
f(x)
g(x)

= Limit as x → 0
df/dx

dg/dx
.

Prove the rule using Taylor expansions of f and g.
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