Solutions to Problems

Problem 6.1

$$
\sum_{0}^{5}=3 \frac{\left(x^{6}-1\right)}{(x-1)} \text { and } \quad \sum_{0}^{2}=3 \frac{\left(x^{2}-1\right)}{(x-1)}
$$

Hence

$$
\sum_{2}^{5}=\frac{3\left(x^{6}-1\right)-3\left(x^{2}-1\right)}{(x-1)}=3 \frac{x^{2}\left(x^{4}-1\right)}{(x-1)}
$$

Problem 6.2

$$
\begin{aligned}
& \sin x=\frac{1}{2 j}\left(e^{j x}-e^{-j x)}\right. \\
&=\frac{1}{2 j}\left(1+j x-\frac{x^{2}}{2!}-\frac{j x^{3}}{3!}=\frac{x^{4}}{4!}+\frac{j x^{5}}{5!} \ldots . .\right) \\
&-\frac{1}{2 j}\left(1-j x-\frac{x^{2}}{2!}+\frac{j x^{3}}{3!}+\frac{x^{4}}{4!}-\frac{j x^{5}}{5!} \ldots . .\right) \\
&=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!} \ldots .
\end{aligned}
$$

Problem 6.3

Expand $(1-x)^{-1}$ using the binomial theorem with $n=-1$.

$$
\begin{aligned}
& (1-x)^{-1}=1+(-1)(-x)+\frac{(-1)(-2)}{2!}(-x)^{2} \\
& +\frac{(-1)(-2)(-3)}{3!}(-x)^{3}+\frac{(-1)(-2)(-3)(-4)}{4!}(-x)^{4} \ldots \\
& \quad=1+x+x^{2}+x^{3}+x^{4} \ldots
\end{aligned}
$$

Problem 6.4

$$
\ln \frac{1+x}{1-x}=\ln (1+x)-\ln (1-x) .
$$

For $x<1$ the result of Example 6.2 can be used to expand the logarithmic terms and subtracting them gives the answer.

Problem 6.5

Use Taylor's theorem to expand f and g close to zero at $x=\delta x$.

$$
\frac{f(\delta x)}{g(\delta x)}=\frac{f(0)+\delta x(\mathrm{~d} f / \mathrm{d} x)+\ldots}{g(0)+\delta x(\mathrm{~d} g / \mathrm{d} x)+\ldots}
$$

where the differentials are evaluated at $x=0$ and higher differentials than the first can be ignored as we take the limit of $\delta x \rightarrow 0$ when

$$
\frac{f(0)}{g(0)}=\frac{(\mathrm{d} f / \mathrm{d} x)_{0}}{(\mathrm{~d} g / \mathrm{d} x)_{0}}
$$

