
7 Differential equations

Most of the physical laws extracted from experimental observations are expressed
mathematically in terms of differential equations. A simple example is when an
observable y is a function of a single variable x and the experimental observations
indicate a relationship between y and its first and/or higher differentials with re-
spect to x. Such a relationship is a differential equation, and the solution of the
equation gives the function y and determines how it varies with x.

Suppose there is a fixed amount of radioactive isotope which decays to a neigh-
bouring stable nucleus. The radioactive material is divided into batches of different
mass and the number of decays from each batch measured over the same time in-
terval. The data show that the numbers of decays are proportional to the mass of
material used, whatever the time interval over which the measurements on the differ-
ent samples were made, and also show that as the time interval is varied the numbers
of decays are proportional to the size of that interval. These observations suggest
that the number of decays dN in an infinitesimal time interval dt is proportional to
the number of radioactive atoms present and to the interval dt.

dN = −λNdt,

or
dN

N
= −λdt, (7.1)

where λ is the constant of proportionality. The minus sign is present because the
decays dN represent a reduction in the number N of nuclei.

Integration of both sides of equation 7.1 gives

lnN = −λt + constant,

and if the number of atoms present at time zero is N0, the constant is lnN0 and

N = N0 exp(−λt), (7.2)

the familiar law of exponential decay. The constant λ is called the decay constant
and is a characteristic of the particular decaying species.

Problem 7.1 Show that half of an original sample has decayed after a time equal to the
half life given by τ1/2 = ln2/λ.

Problem 7.2 A beam of I0 gamma rays is incident upon a thin metal sheet of thickness
d. The number of gamma rays lost from the beam in a thin element of thickness δx of the
metal is proportional to the number I(x) present at the position of the element and the
thickness δx. Determine the number of gamma rays emerging from the metal in terms of
I0, d and the constant of proportionality γ.

1



7.1 First-order equations

Equation (7.1) is called a first-order differential equation because it involves
only the first derivative with respect to time of the function N whose behaviour the
equation describes. The solutions of first-order equations include one constant of
integration which is determined by specifying the value of the function for a given
value of the variable.

Equation 7.1 is a simple first-order equation, but more complicated examples
often occur. A linear first-order equation in is one in which there are no terms
involving powers of y and dy/dx higher than the first. A general linear first-order
equations has the form

dy

dx
+ ky = f(x), (7.3)

where k is a constant. This is solved by multiplying both sides of equation 7.3 by
the integrating factor

β(x) = ekx. (7.4)

The new left-hand side is

(
dy

dx
+ ky

)
× ekx =

d

dx

(
yekx

)
and equation 7.3 becomes

d

dx

(
yekx

)
= f(x)ekx.

Integrating both side gives

yekx =
∫

f(x)ekxdx + C,

where C is a constant of integration, and

y = e−kx
∫

f(x)ekxdx + Ce−kx. (7.5)

Problem 7.3 A non-linear first-order equation is

dN

dt
= −λN2.

Show that, if N = N0 at t = 0,

N = N0(1 + N0λt)−1.

Example 7.1 A radioactive source with decay constant λ1 decays to a daughter nucleus
which in turn decays with a decay constant λ2. If there are N0 parent nuclei at time t = 0
and the number of daughter nuclei is zero at that time, the number N2(t) of daughter
nuclei at time t is not equal to the number of decays of the parent nucleus because some of
the daughters produced in the interval between times zero and t have decayed. Determine
the number N2 as a function of time.
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Solution The differential equation which can be solved to give N2(t) can be established
by noting that at time t, in the very small time interval δt, the increase in N2 equals the
number of parent decays minus the number of daughter decays.

δN2 = λ1N1δt− λ2N2δt,

where N1 is the number of parent nuclei at time t. In the limit as δt tends to the infini-
tesimal dt we obtain the differential equation

dN2

dt
= λ1N1 − λ2N2,

and from equation 7.2
dN2

dt
+ λ2N2 = λ1N0e

−λ1t. (7.6)

This equation has the form of equation 7.3 and the technique of using an integrating factor
described above can be used to obtain its solution. In the notation of equation 7.3, k = λ2

and the integrating factor is eλ2t. Multiplying both side of equation 7.5 by this factor
gives

d
dt

(
N2e

λ2t
)

= λ1N0e
(λ2−λ1)t.

Integrating both sides

N2 =
λ1N0

λ2 − λ1
e−λ1t + Ce−λ2t,

where C is a constant to be determined from the initial condition that at time zero N2 = 0.
This gives

C = − λ1N0

λ2 − λ1

and
N2(t) =

λ1N0

λ2 − λ1
(e−λ1t − e−λ2t).

Problem 7.4 A first-order equation which describes the time variation of the electric
current I(t) though a coil which has an inductance L and resistance R has the form

L
dI(t)
dt

+ RI(t) = V (t).

If V (t) is a constant voltage V0 applied at time zero, show that

I(t) =
V0

R
(1− e−Rt/L).

7.2 Second-order equations

More complicated differential equations for a function y(x) of one variable x
may involve double differentials, d2y/dx2, as well as the first differential dy/dx.
The equation is then a second-order differential equation. The general form of a
linear second-order differential equation is

a
d2y

dx2
+ b

dy

dx
+ cy = f(x), (7.7)

3



where a, b and c are constants and f(x) is a function of the variable x. We note that
any function g(x) which satisfies the equation

a
d2y

dx2
+ b

dy

dx
+ cy = 0, (7.8)

may be added to the solution y = h(x) of equation 7.7 to give a function h(x)+g(x)
which is also a solution. The function g(x) is called the complementary function
and h(x) is called the particular integral. Second-order equations involve two
constants of integration which are determined by specifying values of y for two
values of x. These constants are in the complementary function.

• Equation 7.7 simplifies if both f(x) and the constant b are zero. Then

a
d2y

dx2
+ cy = 0. (7.9)

If both a and c are greater than zero, the solution is

y = A sin ωx + B cos ωx (7.10)

with ω =
√

c/a, as can readily be verified by substitution. In the above, A and B
are the two constants determined by the conditions imposed on the problem.

If a is greater than zero but c is less than zero, put d = −c making d positive.
Equation 7.9 becomes

a
d2y

dx2
− dy = 0 (7.11)

with solution
y = Aeωx + Be−ωx (7.12)

with ω =
√

d/a.

Problem 7.5 Equation 7.10 can be rewritten in the form

y = α sin(ωx + β).

Determine α and β.

• There are formal techniques for solving equation 7.7 when f(x) is non-zero and
for solving more complicated differential equations. Many solutions can be found
using intelligent guesswork based on an understanding of the physics of the situation.
Substitution of proposed solutions into equations will determine whether they are
correct or not.
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Problem 7.6 Show that, if a, b and c are positive and f(x) = 0, the solution to equation 7.7
is y = α sin(ωx + β) multiplied by the factor e−γx with γ = b/2a and ω =

√
c/a− b2/4a2.

Example 7.2 The equation which determines the displacement y of a damped oscillator
driven by a sinusoidal force is

d2y

dt2
+ γ

dy

dt
+ ky = b sinωt, (7.13)

where γ, k and b are positive constants. Determine y(t) in the steady state.
Solution In the steady state the complementary function, which includes the expo-

nentially decaying factor corresponding to that in Problem 7.6, will have died away. The
motion will be oscillatory with the same angular frequency as the force and an amplitude
A. However, it may be out of phase. In the light of this, try as a solution

y = A sin(ωt + θ)

with θ the angle by which the sinusoidal displacement y leads the force.
Inserting the first and second differentials of the assumed solution y into equation 7.13

gives
−Aω2 sin+Aγω cos(ωt + θ) + A sin(ωt + θ) = b sinωt. (7.14)

For the assumed y to be the solution, equation 7.14 must hold at all times after the decay
of the complementary function, and choosing two different times such that (ωt + θ) is
an integral multiple of π/2 and then an integral multiple of π, gives the following two
simultaneous equations.

Aωγ = b sin(−θ) = −b sin θ,

and
−Aω2 + Ak = b sin(π/2− θ) = b cos θ.

Solving for A and θ using equation 5.7 gives

A =
b√

(k − ω2)2 + ω2γ2

and tan θ = −ωγ/(k − ω2). If the assumed solution had not been correct for suitable A
and θ, the substitution into equation 7.13 would not have worked.

Problem 7.7 Several simple second-order equations can be solved by assuming a solution
of the form of a series in ascending powers of x with coefficients to be determined and
stopping the series at a suitable point. Show, in this way, that the solution of the equation

d2y

dx2
+ αy = x2,

is

y = − 2
α2

+
x2

α
.
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