Solutions to Problems

Problem 7.1

When one half the sample has decayed, $N=N_{0} / 2$ and equation 7.2 gives the time $t_{1 / 2}$ as the solution to $N_{0} / 2=N_{0} e^{-\lambda t_{1 / 2}}$. Hence $e^{\lambda t_{1 / 2}}=2$ and $t_{1 / 2}=\ln 2 / \lambda$.

Problem 7.2

$$
\mathrm{d} I=\lambda I \mathrm{~d} x \text { hence } \frac{\mathrm{d} I}{I}=-\lambda \mathrm{d} x
$$

As for equation 7.1 the solution is $I=I_{0} e^{-\lambda x}$ and thus when $x=d$ the number of gamma rays in the beam is $I(d)=I_{0} e^{\lambda d}$.

Problem 7.3

Integrating both sides of $\mathrm{d} N / N^{2}=-\lambda \mathrm{d} t$ gives

$$
-\frac{1}{N}=-\lambda t+C
$$

At $t=0, N=N_{0}$ and the constant $C=-1 / N_{0}$. Hence

$$
N=1 /\left(\lambda t+1 / N_{0}\right)=N_{0} \frac{1}{\left(1+N_{0} \lambda t\right)}
$$

Problem 7.4

The integrating factor for the equation

$$
L \frac{\mathrm{~d} I}{\mathrm{~d} t}+R I=V_{0}
$$

is $e^{R t / L}$. Multiplying both sides by this factor gives

$$
\left(\frac{\mathrm{d} I}{\mathrm{~d} t}+\frac{R}{L} I\right) e^{R t / L}=\frac{V_{0}}{L} e^{R t / L}
$$

or

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\left(I e^{R t / L}\right)=\frac{V_{0}}{L} e^{R t / L}
$$

Integrating both sides

$$
I e^{R t / L}=\frac{V_{0}}{R} e^{R t / L}+C
$$

and

$$
I=\frac{V_{0}}{R}+C e^{-R t / L}
$$

But $I=0$ for $t=0$ and hence the constant $C=-V_{0} / R$ and

$$
I=\frac{V_{0}}{R}\left(1-e^{-R t / L}\right)
$$

Problem 7.5

$$
y=\alpha \sin (\omega x+\beta)=\alpha \sin \omega x \cos \beta+\alpha \sin \beta \cos \omega x
$$

Hence

$$
A=\alpha \cos \beta \text { and } B=\alpha \sin \beta
$$

Squaring and adding results in

$$
\alpha=\sqrt{A^{2}+B^{2}} \text { and } \tan \beta=B / A .
$$

Problem 7.6

$$
\begin{gathered}
y=\alpha e^{-\gamma x} \sin (\omega x+\beta) \\
\mathrm{d} y / \mathrm{d} x=-\alpha \gamma e^{-\gamma x} \sin (\omega x+\beta)+\alpha \omega e^{-\gamma x} \cos (\omega x+\beta) \\
\mathrm{d}^{2} / \mathrm{d} x^{2}=\alpha \gamma^{2} e^{-\gamma x} \sin (\omega x+\beta)_{\alpha} \omega \gamma e^{-\gamma x} \cos (\omega x+\beta) \\
\\
-\alpha \gamma \omega e^{-\gamma x} \cos (\omega x+\beta)-\alpha \omega^{2} e^{-\gamma x} \sin (\omega x+\beta)
\end{gathered}
$$

Substitution in equation 7.7 gives

$$
\begin{aligned}
& {\left[a \alpha \gamma^{2} e^{-\gamma x}-a \alpha \omega^{2} e^{-\gamma x}-b \alpha \gamma e^{-\gamma x}+c \alpha e^{-\gamma x}\right] \sin (\omega x+\beta)} \\
& \quad+\left[-a \alpha \omega \gamma e^{-\gamma x}-a \alpha \omega \gamma e^{-\gamma x}+b \alpha \omega e^{-\gamma x}\right] \cos (\omega x+\beta)
\end{aligned}
$$

For values of x such that $(\omega x+\beta)=n \pi$ where n is an integer, the cosine term is ± 1 and the sin term is zero. This gives the result

$$
-2 a \alpha \omega \gamma+\omega b=0 \text { and } \gamma=b / 2 a .
$$

For values of x such that $(\omega x+\beta)=(n+1 / 2 \pi)$ where n is an integer, the sine term is ± 1 and the cos term is zero. This gives

$$
a \gamma^{2}-a \omega^{2}-b \gamma+c=0 \text { and } \omega^{2}=c / a-b^{2} / 4 a^{2} .
$$

Problem 7.7

$$
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+\alpha y=x^{2}
$$

Try as solution

$$
y=a+b x+c x^{2}+d x^{3}+e x^{4} .
$$

Substitution of it and its derivatives into the equation gives

$$
2 c+6 d x+12 c x^{2}+\alpha a+\alpha b x+\alpha c x^{2}+\alpha d x^{3}+\alpha e x^{4}=x^{2} .
$$

Equating the coefficients of the different powers of x on both sides of the above gives $d=e=0 ; a \alpha+2 c=0 ; 6 d+b \alpha=0$, and $12 e+c \alpha=1$. From these relationships, $b=0 ; c=1 / \alpha$ and $a=-2 / \alpha^{2}$, and the solution to the differential equation is

$$
y=-2 / \alpha^{2}+x^{2} / \alpha
$$

