Solutions to Problems

Problem 8.1

$$
\begin{aligned}
& \text { For } f=(x+y)^{3}-x^{2}, \partial f / \partial x=3(x+y)^{2}-2 x \text { and } \partial^{2} f / \partial x \partial y=6(x+y) . \\
& \partial f / \partial y=3(x+y)^{2} \text { and } \partial^{2} f / \partial y \partial x=6(x+y) .
\end{aligned}
$$

Problem 8.2

For $f=\ln \left(x^{3}+y^{2}+z\right), \partial f / \partial x=3 x^{2}\left(x^{3}+y^{2}+z\right)^{-1}$ and $\partial^{2} f / \partial x \partial y=-6 x^{2} y\left(x^{3}+\right.$ $\left.y^{2}+z\right)^{-2}$.

Also $e^{f}=x^{3}+y^{2}+z$ and thus $z=e^{f}-x^{3}-y^{2}$, and $\partial z / \partial y=-2 y$. Reverting to the expression for $f, \partial f / \partial z=\left(x^{3}+y^{2}+z\right)^{-1}$. Hence

$$
\left(\frac{\partial f}{\partial z}\right)\left(\frac{\partial z}{\partial y}\right)=-\frac{2 y}{\left(x^{3}+y^{2}+z\right)}
$$

and

$$
\frac{\partial}{\partial x}\left(\frac{\partial f}{\partial z}\right)\left(\frac{\partial z}{\partial y}\right)=6 x^{2} y\left(x^{3}+y^{2}+z\right)^{-2}
$$

which is $-\partial^{2} f / \partial x \partial y$.

Problem 8.3

With the potential zero equation 8.7 becomes

$$
-\frac{\hbar^{2}}{2 m}\left(\frac{\partial^{2} \phi}{\partial x^{2}}+\frac{\partial^{2} \phi}{\partial y^{2}}+\frac{\partial^{2} \phi}{\partial z^{2}}\right)=E \phi
$$

and the variables can be separated as in Example 8.3 to give

$$
-\frac{\hbar^{2}}{2 m}\left[\frac{1}{X} \frac{\partial^{2} X}{\partial x^{2}}+\frac{1}{Y} \frac{\partial^{2} Y}{\partial y^{2}}+\frac{1}{Z} \frac{\partial^{2} Z}{\partial z^{2}}\right]=E .
$$

Each of the terms like $-\left(\hbar^{2} / 2 m\right)(1 / X)\left(\partial^{2} X / \partial x^{2}\right)$ is equal to a constant, say E_{x}, E_{y} and E_{z}, where $E_{x}+E_{y}+E_{z}=E$, and we have three separate equations like

$$
\frac{\partial^{2} X}{\partial x^{2}}=-\frac{2 m E_{x}}{\hbar^{2}} X
$$

to solve. Since $E_{x}>0$, the solution is given by equation $7.10, X=A \sin \omega x+$ $B \cos \omega x$ with $\omega^{2}=2 m E_{x} / \hbar^{2}$. But X is zero at $x=0$ and $x=a$. Hence $B=0$ and $\omega a=n \pi$ where n is an integer. Substituting back in the differential equation for X gives $E_{x}=n^{2} \hbar^{2} \pi^{2} / 2 m a^{2}$. The same procedure gives similar expressions for E_{y} and E_{z}, and the lowest value of E is when $n=1$ and $E=3 \pi^{2} \hbar^{2} / 2 m a^{2}$.

