Solutions to Problems

Problem 8.1

For
$$f = (x+y)^3 - x^2$$
, $\partial f / \partial x = 3(x+y)^2 - 2x$ and $\partial^2 f / \partial x \partial y = 6(x+y)$.
 $\partial f / \partial y = 3(x+y)^2$ and $\partial^2 f / \partial y \partial x = 6(x+y)$.

Problem 8.2

For $f = \ln(x^3 + y^2 + z)$, $\partial f / \partial x = 3x^2(x^3 + y^2 + z)^{-1}$ and $\partial^2 f / \partial x \partial y = -6x^2y(x^3 + y^2 + z)^{-2}$.

Also $e^f = x^3 + y^2 + z$ and thus $z = e^f - x^3 - y^2$, and $\partial z / \partial y = -2y$. Reverting to the expression for f, $\partial f / \partial z = (x^3 + y^2 + z)^{-1}$. Hence

$$\left(\frac{\partial f}{\partial z}\right)\left(\frac{\partial z}{\partial y}\right) = -\frac{2y}{(x^3 + y^2 + z)}$$

and

$$\frac{\partial}{\partial x} \left(\frac{\partial f}{\partial z} \right) \left(\frac{\partial z}{\partial y} \right) = 6x^2 y (x^3 + y^2 + z)^{-2},$$

which is $-\partial^2 f/\partial x \partial y$.

Problem 8.3

With the potential zero equation 8.7 becomes

$$-\frac{\hbar^2}{2m}\left(\frac{\partial^2\phi}{\partial x^2} + \frac{\partial^2\phi}{\partial y^2} + \frac{\partial^2\phi}{\partial z^2}\right) = E\phi$$

and the variables can be separated as in Example 8.3 to give

$$-\frac{\hbar^2}{2m}\left[\frac{1}{X}\frac{\partial^2 X}{\partial x^2} + \frac{1}{Y}\frac{\partial^2 Y}{\partial y^2} + \frac{1}{Z}\frac{\partial^2 Z}{\partial z^2}\right] = E.$$

Each of the terms like $-(\hbar^2/2m)(1/X)(\partial^2 X/\partial x^2)$ is equal to a constant, say E_x, E_y and E_z , where $E_x + E_y + E_z = E$, and we have three separate equations like

$$\frac{\partial^2 X}{\partial x^2} = -\frac{2mE_x}{\hbar^2}X$$

to solve. Since $E_x > 0$, the solution is given by equation 7.10, $X = A \sin \omega x + B \cos \omega x$ with $\omega^2 = 2mE_x/\hbar^2$. But X is zero at x = 0 and x = a. Hence B = 0 and $\omega a = n\pi$ where n is an integer. Substituting back in the differential equation for X gives $E_x = n^2 \hbar^2 \pi^2 / 2ma^2$. The same procedure gives similar expressions for E_y and E_z , and the lowest value of E is when n = 1 and $E = 3\pi^2 \hbar^2 / 2ma^2$.