9 Coordinate systems

Space is three-dimensional, and to define the position of a point requires three
numbers, or coordinates and a reference system in which to interpret the three
numbers. There are three main coordinate systems used, each one chosen to
most easily describe the situation under study. These three are discussed in this
section.

The choice of coordinate system is often dictated by a symmetry exhibited by
the problem. For example, looking out from the centre of a cube, all corners are
equivalent; looking at a very long straight wire, all points equidistant from the
wire are equivalent. Nothing in the description of the cube can distinguish one
corner from another, and nothing in the description of effects related to the wire
can distinguish one equidistant point from another.

9.1 Cartesian coordinates

The simplest system of coordinates is the cartesian coordinate system. In this,
three mutually perpendicular axes are drawn through a point chosen to be the
origin, the point labelled O on Figure 9.1. The axes are labelled x,y and z, and
positive values of these variables are measured along the axes from the origin in
the directions shown by the arrows. With this convention the coordinate system
shown in the figure is called a right-handed coordinate system. The position
of a point P is now unambiguously specified by the values of the three cartesian
coordinates zp,yp and zp. The line PQ on the figure is drawn to be perpendicular
to the z — y plane, when the length PQ equals zp. The lines AQ and BQ are drawn
perpendicular to the z— and y— axes respectively, when OA equals zp and OB is
yp. (The z-coordinate can also be obtained by drawing the perpendicular from P to
hit the z axis at a point C when OC equals zp). Note that each of these coordinates
is a scalar.

Figure 9.1 Cartesian coordinates.



Problem 9.1 Two small masses, one of 100g the other 200g, are connected by a light rod
of length 30 cm which lies in the z — y plane and makes an angle of 30°with the z-axis.
Take the centre of mass of the system to be the origin and determine the coordinates of the
masses. The rod is displaced upwards by 10 cm, still lying in a plane parallel to the z —y
plane, and rotated to make an angle of 60° to the x-axis. Determine the new coordinates.

9.1.1 Cartesian components of vectors

The position of P with respect the origin can also be given in terms of the position
vector r, which is a vector in the direction from O to P with magnitude equal to
the length of the line OP. The components of the position vector r of Figure 9.1
along the z,y and 2z axes are vectors with magnitudes equal to the magnitudes of
the cartesian coordinates z,y and z respectively. Defining unit vectors i, j and k as
vectors of unit length along the positive directions of the x, y and z axes respectively,
the position vector r is given in terms of the three cartesian coordinates of P by

r =zi+yj+ zk (9.1)

Descriptions of vectors in terms of their components in the directions of three
mutually perpendicular axes are useful in evaluating their additions, subtractions
and multiplications. If a vector a is written as a,i + a,j + a.k, and similarly for a
vector b, the vector obtained by their addition is given by adding the components
in the three directions.

(a+b) = (a, +by)i+ (a, +b,)j+ (a. +b.)k. (9.2)

The vector (a — b) is obtained by subtracting the components.

The scalar product of the two vectors is
a.b = a,b; + a,b, + a.b., (9.3)
and their vector product is

axb=(ab, —aby))i+ (a.b, —a,b,)j+ (azb, — a,b, k. (9.4)

Example 9.1. Show that the magnitude of the vector (a+ b) is |(a + b)| = (a® + b* +
2abcos 0)'/2, where 6 is the angle between the two vectors.
Solution.

(a+b).(a+b)=da>+b>+2ab

=a? + b* + 2abcos b,

from equation 1.7. Hence

|(a+b)| = (a® 4 b* + 2abcos §)/2.
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9.1.2 Calculations with cartesian coordinates

The cartesian coordinate system is the most straightforward to work with because
at any point the directions of the unit vectors i,j and k remain the same as does
the size of an infinitesimal volume element; it is the volume of a small square of
sides dz, dy and dz, namely dezdydz. Descriptions using the cartesian system are
conceptually easy but their application in many situations is inconvenient because
curved surfaces do not lend themselves to an easy description using coordinates more
suited to straight lines and planes.

Example 9.2. Show that the moment of inertia of a square disc of side a when rotated
about an axis through its centre perpendicular to the plane of the disc is (1/6)Ma? where
M is the mass of the disc of uniform material.

Solution. The moment of inertia I is the sum over the area of the disc of vanishingly
small terms like p dxdy times the square of the distance of the element from the axis of
rotation, where p is the mass per unit area of the material of the disc. A vanishingly small
area at position z,y is shown on Figure 9.2. The sum for the moment of inertia is an
integral over z and y with the limits on each variable going from —a/2 to +a/2.

+a/2 +a/2
I=p da:/ dy(z? +4?).
—a/2 —a/2
The integral over z may be done first keeping y constant, when
+a/2 3 +a/2 +a/2 a3
I:p/ dy | = + 2y? :,0/ dy | — +ay? ).
—a/2 3 —a/2 —a/2 12

Evaluating the definite integral over y and putting the mass of the disc equal to pa? gives
the answer above.

&

Figure 9.2 The calculation of the moment of inertia of a square disc.



Problem 9.2. Show that the moment of inertia of a solid cube of uniform material for
rotation about an axis through its centre and passing through the centres of two opposite

faces is equal to (1/6)Ma?, with M the mass of the cube of side a.

9.2 Spherical polar coordinates

Many problems involve forces which depend only on the separation of two objects
and point towards their centre of mass, such as gravitational and electrostatic forces.
These are called central forces. The coordinate system which is most suited for the
discussion of central forces is the spherical polar coordinate system.

Figure 9.3 shows the spherical polar coordinates (7,8, ¢) of a point P. The coor-
dinate r is the length of the line OP joining the origin to the point. The coordinate
6 is the angle the line OP makes with the polar axis, usually called the z-axis, and
the coordinate ¢ is the angle between the line OQ and the z-axis. The point Q is
where the perpendicular from P meets the x — y plane. In specifying ¢ one starts
at a positive point on the z-axis and rotates to meet the line OQ in the sense given
by the right-hand screw rule, viz that rotation which would advance a right-hand
screw in the positive z-direction. The angle ¢ may thus vary from zero to 2w. The
angle 6 may vary from zero to 7.
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Figure 9.3 Spherical polar coordinates.



Example 9.3. Determine the relationship between the coordinates (z,y, z) of a point and
the coordinates (r,0, ¢).

Solution. In Figure 9.3, OA=z and OB=y and OQ=rsinf. Hence
x = rsin 6 cos ¢,

y = rsinfsin ¢.

The length PQ is r cos # and so
z =rcosé.

9.2.1 Calculations with spherical polar coordinates

The unit vectors in this coordinate system point in different directions as the
coordinates change. The unit vector T is in the direction of r increasing; the unit
vector 6 in the direction of @ increasing, and the unit vector ¢ in the direction of ¢
increasing.

The volume dV of an infinitesimal volume element also differs at different points.
Figure 9.4 shows an elementary volume element at a point with coordinates (r, 6, ¢).
One side of the volume has a side of length dr in the direction of the unit vector t,
another side of length rd# in the direction of the unit vector 8, and a third of length
rsinfd¢ in the direction of the unit vector ngﬁ, giving

dV = r%sin Odrddde. 9.5
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Figure 9.4 An elementary volume element in spherical polar coordinates.



Example 9.4. Show that the surface area of a sphere of radius R is 47 R?.

Solution. The area of an infinitesimal area element at fixed radius R is R? sin6 df dé.
The surface area A is thus the integral over the complete surface S

A= R / sin 0dOde.
S

The limits of the angle 6 are from zero to m and those of the angle ¢ from zero to 2.

Hence
27

A= R / singdd [ do.
0 0

This leads to
A = R*27(cos 6)?,

and the area is 47 R2.

Problem 9.3 Show that the volume of a sphere of radius R is (4/3)7R3.

Problem 9.4. Show that the volume of an object which is a sphere of radius R with a
slice cut off at a distance a from the centre is (27 R3/3)(1 + a/R).

9.3 Cylindrical polar coordinates

An object or physical system often has rotational symmetry; that is if you choose
a particular axis through the body or system, rotation about that axis leaves the
situation unchanged. There is no way of detecting the rotation. This symmetry can
be useful in determining the physical properties of the system. An example is the
magnetic field due to a current in a very long straight wire. Things look the same
to all observers the same distance from the wire, irrespective of where the wire is
viewed from and this leads to the conclusion that the field is the same at all points
equidistant from the wire.

In these situations the coordinate system to use to take advantage of such symme-
try is the cylindrical polar coordinate system. Figure 9.5 shows the cylindrical
polar coordinates (7, ¢, z) of a point P. The coordinate r is the distance AP of the
point P from the axis. The coordinate ¢ is the angle the line AP makes with the
x-axis, and the coordinate z is the distance OA from the origin to A. In specifying
¢ one starts at a positive point on the z-axis and rotates round to meet the line AP
in the sense given by the right-hand screw rule. The angle ¢ may thus vary from
zero to 2m.



Figure 9.5 Cylindrical polar coordinates.

9.3.1 Calculations with cylindrical polar coordinates

A simple object which has a cylindrical symmetry is a right cylinder or part of a
rod with ends cut off straight across. The volume of the bar is given from elementary
considerations and is the area of the base, mR%x the height h, but it is instructive
to work it out according to the method one would use for more difficult cases.

Example 9.5, Show that the volume of a cylindrical bar of radius R and height h is
7R?h.

Solution. Choose the origin to be at the centre of the cylinder and the z—axis to
coincide with its axis. Figure 9.6 shows a section cut through the bar perpendicular to
the axis at height z. A point in the cylinder is specified by three coordinates r, ¢ and z.
Consider an infinitesimal volume element at the point with those coordinates shown in
Figure 9.6. The volume of the element is obtained by increasing r by dr, ¢ by d¢ and
z by dz. The area of the element in the plane perpendicular to the z-axis is the shaded
area shown on th figure and has size dr x r d¢. If the thickness of the section is dz, the
infinitesimal volume element is dV = r dr d¢ dz. The whole volume is then

/dV:/rdrd¢dz.
1% 1%

The limits of the coordinates over which the volume spreads are r from zero to R; z from
—h/2 to +h/2, and ¢ from zero to 27 and

r=R rz=+h/2 r¢=2pi
V= / r dr d¢ dz.
r=0 Jz=—h/2 J¢=0

Each integral can now be done independently of the others to give the answer V = 7 R?h.
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Figure 9.6 An elementary volume element in cylindrical polar coordinates.

Problem 9.5 Show that the volume of an upright cone of height h and base radius R is
TR2h/3.

Problem 9.6 A solid cylindrical bar of mass M, height h and radius R is rotated about
its axis. Show that the moment of inertia is %M R2.




