## Solutions to Problems

## Problem 9.1

In the first situation $x=20 \sin 30^{\circ}=10 \sqrt{3} \mathrm{~cm} ; y=20 \cos 30^{\circ}=10 \mathrm{~cm}$, and $z=0$. In the second, $x=20 \cos 60^{\circ}=10 \mathrm{~cm} ; y=20 \sin 60^{\circ}=10 \sqrt{3} \mathrm{~cm}$, and $z=10$ cm .

## Problem 9.2

The contribution to the moment of inertia from the infinitesimal volume element at $(x, y, z)$ is its mass $\rho \mathrm{d} x \mathrm{~d} y \mathrm{~d} z$ times the square of its distance from the axis, $\left(x^{2}+y^{2}\right)$. The moment of inertia is

$$
\begin{gathered}
I=\rho \int_{x=-a / 2}^{a / 2} \int_{y=-a / 2}^{a / 2} \int_{z=-a / 2}^{a / 2}\left(x^{2}+y^{2}\right) \mathrm{d} x \mathrm{~d} y \mathrm{~d} z \\
=\rho a^{2}\left[\frac{1}{3} x^{3}\right]_{-a / 2}^{a / 2}+\rho a^{2}\left[\frac{1}{3} y^{3}\right]_{-a / 2}^{a / 2} \\
=\frac{\rho a^{5}}{6}=\frac{1}{6} M a^{2} .
\end{gathered}
$$

## Problem 9.3

$$
\begin{gathered}
V=\int_{r=0}^{R} \int_{\theta=0}^{\pi} \int_{\phi=0}^{2 \pi} r^{2} \sin \theta \mathrm{~d} r \mathrm{~d} \theta \mathrm{~d} \phi=2 \pi \int_{0}^{R} \int_{0}^{\pi} r^{2} \mathrm{~d} r \mathrm{~d}(\cos \theta) \\
=-\frac{2 \pi R^{3}}{3}[\cos \theta]_{0}^{\pi}=\frac{4}{3} \pi R^{3} .
\end{gathered}
$$

## Problem 9.4

The difference between this volume and that of the whole sphere is that the limits on the integration over the angle $\theta$ are from $\theta_{1}$ shown in Figure B. 2 to $\pi$ and not over the whole range of $\theta$.

$$
\begin{aligned}
V & =\int_{r=0}^{R} \int_{\theta=\theta_{1}}^{\pi} \int_{\phi=0}^{2 \pi} r^{2} \sin \theta \mathrm{~d} r \mathrm{~d} \theta \mathrm{~d} \phi=2 \pi \int_{0}^{R} \int_{0}^{\pi} r^{2} \mathrm{~d} r \mathrm{~d}(\cos \theta) \\
& =-\frac{2 \pi R^{3}}{3}[\cos \theta]_{\theta_{1}}^{\pi}=\frac{2}{3} \pi R^{3}\left(1+\cos \theta_{1}\right)=\frac{2}{3} \pi R^{3}\left(1+\frac{a}{R}\right),
\end{aligned}
$$

since $\cos \theta_{1}=a / R$.


Figure B. 2

## Problem 9.5

From Figure B. 3

$$
V=\int_{r=0}^{R z / h} \int_{\phi=0}^{2 \pi} \int_{z=0}^{h} r \mathrm{~d} r \mathrm{~d} \phi \mathrm{~d} z
$$

The upper limit on $r$ now depends on $z$ and so do the $r$ integral first to give

$$
V=2 \pi \int_{0}^{h} \frac{1}{2}\left(\frac{R^{2} z^{2}}{h^{2}}\right) \mathrm{d} z=\frac{1}{3} \pi R^{2} h .
$$



Figure B. 3

## Problem 9.6

With $\rho$ the density, the moment of inertia

$$
I=\rho \int_{r=0}^{R} \int_{\phi=0}^{2 \pi} \int_{z-0}^{h} r^{3} \mathrm{~d} r \mathrm{~d} \phi \mathrm{~d} z=\frac{1}{4} \rho R^{4} 2 \pi h=\frac{1}{2} M R^{2} .
$$

